Optimal. Leaf size=32 \[ -x+\frac {-e^{e^x}+\log \left (x^2\right )}{\log \left (\frac {(2+x) \left (x+x^2\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-3 x-2 x^2\right ) \log \left (x^2\right )+\left (4+6 x+2 x^2\right ) \log \left (2+3 x+x^2\right )+\left (-2 x-3 x^2-x^3\right ) \log ^2\left (2+3 x+x^2\right )+e^{e^x} \left (3 x+2 x^2+e^x \left (-2 x-3 x^2-x^3\right ) \log \left (2+3 x+x^2\right )\right )}{\left (2 x+3 x^2+x^3\right ) \log ^2\left (2+3 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-3 x-2 x^2\right ) \log \left (x^2\right )+\left (4+6 x+2 x^2\right ) \log \left (2+3 x+x^2\right )+\left (-2 x-3 x^2-x^3\right ) \log ^2\left (2+3 x+x^2\right )+e^{e^x} \left (3 x+2 x^2+e^x \left (-2 x-3 x^2-x^3\right ) \log \left (2+3 x+x^2\right )\right )}{x \left (2+3 x+x^2\right ) \log ^2\left (2+3 x+x^2\right )} \, dx\\ &=\int \left (-1+\frac {(3+2 x) \left (e^{e^x}-\log \left (x^2\right )\right )}{\left (2+3 x+x^2\right ) \log ^2\left (2+3 x+x^2\right )}+\frac {2-e^{e^x+x} x}{x \log \left (2+3 x+x^2\right )}\right ) \, dx\\ &=-x+\int \frac {(3+2 x) \left (e^{e^x}-\log \left (x^2\right )\right )}{\left (2+3 x+x^2\right ) \log ^2\left (2+3 x+x^2\right )} \, dx+\int \frac {2-e^{e^x+x} x}{x \log \left (2+3 x+x^2\right )} \, dx\\ &=-x+\int \left (\frac {e^{e^x} (3+2 x)}{(1+x) (2+x) \log ^2\left (2+3 x+x^2\right )}-\frac {(3+2 x) \log \left (x^2\right )}{(1+x) (2+x) \log ^2\left (2+3 x+x^2\right )}\right ) \, dx+\int \left (-\frac {e^{e^x+x}}{\log \left (2+3 x+x^2\right )}+\frac {2}{x \log \left (2+3 x+x^2\right )}\right ) \, dx\\ &=-x+2 \int \frac {1}{x \log \left (2+3 x+x^2\right )} \, dx+\int \frac {e^{e^x} (3+2 x)}{(1+x) (2+x) \log ^2\left (2+3 x+x^2\right )} \, dx-\int \frac {(3+2 x) \log \left (x^2\right )}{(1+x) (2+x) \log ^2\left (2+3 x+x^2\right )} \, dx-\int \frac {e^{e^x+x}}{\log \left (2+3 x+x^2\right )} \, dx\\ &=-x+2 \int \frac {1}{x \log \left (2+3 x+x^2\right )} \, dx+\int \left (\frac {e^{e^x}}{(1+x) \log ^2\left (2+3 x+x^2\right )}+\frac {e^{e^x}}{(2+x) \log ^2\left (2+3 x+x^2\right )}\right ) \, dx-\int \left (\frac {\log \left (x^2\right )}{(1+x) \log ^2\left (2+3 x+x^2\right )}+\frac {\log \left (x^2\right )}{(2+x) \log ^2\left (2+3 x+x^2\right )}\right ) \, dx-\int \frac {e^{e^x+x}}{\log \left (2+3 x+x^2\right )} \, dx\\ &=-x+2 \int \frac {1}{x \log \left (2+3 x+x^2\right )} \, dx+\int \frac {e^{e^x}}{(1+x) \log ^2\left (2+3 x+x^2\right )} \, dx+\int \frac {e^{e^x}}{(2+x) \log ^2\left (2+3 x+x^2\right )} \, dx-\int \frac {\log \left (x^2\right )}{(1+x) \log ^2\left (2+3 x+x^2\right )} \, dx-\int \frac {\log \left (x^2\right )}{(2+x) \log ^2\left (2+3 x+x^2\right )} \, dx-\int \frac {e^{e^x+x}}{\log \left (2+3 x+x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 38, normalized size = 1.19 \begin {gather*} -x-\frac {e^{e^x}}{\log \left (2+3 x+x^2\right )}+\frac {\log \left (x^2\right )}{\log \left (2+3 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 34, normalized size = 1.06 \begin {gather*} -\frac {x \log \left (x^{2} + 3 \, x + 2\right ) + e^{\left (e^{x}\right )} - \log \left (x^{2}\right )}{\log \left (x^{2} + 3 \, x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 34, normalized size = 1.06 \begin {gather*} -\frac {x \log \left (x^{2} + 3 \, x + 2\right ) + e^{\left (e^{x}\right )} - \log \left (x^{2}\right )}{\log \left (x^{2} + 3 \, x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 88, normalized size = 2.75
method | result | size |
risch | \(-x +\frac {4 \ln \relax (x )-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2 \ln \left (x^{2}+3 x +2\right )}-\frac {{\mathrm e}^{{\mathrm e}^{x}}}{\ln \left (x^{2}+3 x +2\right )}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 33, normalized size = 1.03 \begin {gather*} -\frac {x \log \left (x + 2\right ) + x \log \left (x + 1\right ) + e^{\left (e^{x}\right )} - 2 \, \log \relax (x)}{\log \left (x + 2\right ) + \log \left (x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (3\,x+2\,x^2-{\mathrm {e}}^x\,\ln \left (x^2+3\,x+2\right )\,\left (x^3+3\,x^2+2\,x\right )\right )-\ln \left (x^2\right )\,\left (2\,x^2+3\,x\right )+\ln \left (x^2+3\,x+2\right )\,\left (2\,x^2+6\,x+4\right )-{\ln \left (x^2+3\,x+2\right )}^2\,\left (x^3+3\,x^2+2\,x\right )}{{\ln \left (x^2+3\,x+2\right )}^2\,\left (x^3+3\,x^2+2\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.73, size = 31, normalized size = 0.97 \begin {gather*} - x - \frac {e^{e^{x}}}{\log {\left (x^{2} + 3 x + 2 \right )}} + \frac {\log {\left (x^{2} \right )}}{\log {\left (x^{2} + 3 x + 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________