Optimal. Leaf size=22 \[ x+4 e^{12+e^{(-3+x) x}+x} (-1+x)^2 x \]
________________________________________________________________________________________
Rubi [F] time = 1.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (1+e^{2+e^{-3 x+x^2}+x} \left (e^{10} \left (4-12 x+4 x^2+4 x^3\right )+e^{10-3 x+x^2} \left (-12 x+32 x^2-28 x^3+8 x^4\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\int e^{2+e^{-3 x+x^2}+x} \left (e^{10} \left (4-12 x+4 x^2+4 x^3\right )+e^{10-3 x+x^2} \left (-12 x+32 x^2-28 x^3+8 x^4\right )\right ) \, dx\\ &=x+\int \left (4 e^{12+e^{-3 x+x^2}-2 x+x^2} (-1+x)^2 x (-3+2 x)+4 e^{12+e^{-3 x+x^2}+x} \left (1-3 x+x^2+x^3\right )\right ) \, dx\\ &=x+4 \int e^{12+e^{-3 x+x^2}-2 x+x^2} (-1+x)^2 x (-3+2 x) \, dx+4 \int e^{12+e^{-3 x+x^2}+x} \left (1-3 x+x^2+x^3\right ) \, dx\\ &=x+4 \int \left (e^{12+e^{-3 x+x^2}+x}-3 e^{12+e^{-3 x+x^2}+x} x+e^{12+e^{-3 x+x^2}+x} x^2+e^{12+e^{-3 x+x^2}+x} x^3\right ) \, dx+4 \int \left (-3 e^{12+e^{-3 x+x^2}-2 x+x^2} x+8 e^{12+e^{-3 x+x^2}-2 x+x^2} x^2-7 e^{12+e^{-3 x+x^2}-2 x+x^2} x^3+2 e^{12+e^{-3 x+x^2}-2 x+x^2} x^4\right ) \, dx\\ &=x+4 \int e^{12+e^{-3 x+x^2}+x} \, dx+4 \int e^{12+e^{-3 x+x^2}+x} x^2 \, dx+4 \int e^{12+e^{-3 x+x^2}+x} x^3 \, dx+8 \int e^{12+e^{-3 x+x^2}-2 x+x^2} x^4 \, dx-12 \int e^{12+e^{-3 x+x^2}+x} x \, dx-12 \int e^{12+e^{-3 x+x^2}-2 x+x^2} x \, dx-28 \int e^{12+e^{-3 x+x^2}-2 x+x^2} x^3 \, dx+32 \int e^{12+e^{-3 x+x^2}-2 x+x^2} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.64, size = 22, normalized size = 1.00 \begin {gather*} x+4 e^{12+e^{(-3+x) x}+x} (-1+x)^2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 36, normalized size = 1.64 \begin {gather*} 4 \, {\left (x^{3} - 2 \, x^{2} + x\right )} e^{\left ({\left ({\left (x + 2\right )} e^{10} + e^{\left (x^{2} - 3 \, x + 10\right )}\right )} e^{\left (-10\right )} + 10\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 51, normalized size = 2.32 \begin {gather*} 4 \, x^{3} e^{\left (x + e^{\left (x^{2} - 3 \, x\right )} + 12\right )} - 8 \, x^{2} e^{\left (x + e^{\left (x^{2} - 3 \, x\right )} + 12\right )} + 4 \, x e^{\left (x + e^{\left (x^{2} - 3 \, x\right )} + 12\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 24, normalized size = 1.09
method | result | size |
risch | \(4 x \left (x^{2}-2 x +1\right ) {\mathrm e}^{12+x +{\mathrm e}^{x \left (x -3\right )}}+x\) | \(24\) |
default | \(x +4 \,{\mathrm e}^{10} {\mathrm e}^{{\mathrm e}^{x^{2}-3 x}+2+x} x -8 \,{\mathrm e}^{10} {\mathrm e}^{{\mathrm e}^{x^{2}-3 x}+2+x} x^{2}+4 \,{\mathrm e}^{10} {\mathrm e}^{{\mathrm e}^{x^{2}-3 x}+2+x} x^{3}\) | \(64\) |
norman | \(x +4 \,{\mathrm e}^{10} {\mathrm e}^{{\mathrm e}^{x^{2}-3 x}+2+x} x -8 \,{\mathrm e}^{10} {\mathrm e}^{{\mathrm e}^{x^{2}-3 x}+2+x} x^{2}+4 \,{\mathrm e}^{10} {\mathrm e}^{{\mathrm e}^{x^{2}-3 x}+2+x} x^{3}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 33, normalized size = 1.50 \begin {gather*} 4 \, {\left (x^{3} e^{12} - 2 \, x^{2} e^{12} + x e^{12}\right )} e^{\left (x + e^{\left (x^{2} - 3 \, x\right )}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 54, normalized size = 2.45 \begin {gather*} x-8\,x^2\,{\mathrm {e}}^{x+{\mathrm {e}}^{-3\,x}\,{\mathrm {e}}^{x^2}+12}+4\,x^3\,{\mathrm {e}}^{x+{\mathrm {e}}^{-3\,x}\,{\mathrm {e}}^{x^2}+12}+4\,x\,{\mathrm {e}}^{x+{\mathrm {e}}^{-3\,x}\,{\mathrm {e}}^{x^2}+12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 84.44, size = 37, normalized size = 1.68 \begin {gather*} x + \left (4 x^{3} e^{10} - 8 x^{2} e^{10} + 4 x e^{10}\right ) e^{x + e^{x^{2} - 3 x} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________