Optimal. Leaf size=26 \[ e^{-x^2+x^4} \left (x+6 \log \left ((4+x) \left (x+x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x^2+x^4} \left (x+6 \log \left (4 x+5 x^2+x^3\right )\right ) \left (24+64 x+23 x^2-7 x^3-10 x^4+14 x^5+20 x^6+4 x^7+\left (-48 x^2-60 x^3+84 x^4+120 x^5+24 x^6\right ) \log \left (4 x+5 x^2+x^3\right )\right )}{4 x^2+5 x^3+x^4+\left (24 x+30 x^2+6 x^3\right ) \log \left (4 x+5 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x^2+x^4} \left (24+64 x+23 x^2-7 x^3-10 x^4+14 x^5+20 x^6+4 x^7+12 x^2 \left (-4-5 x+7 x^2+10 x^3+2 x^4\right ) \log \left (x \left (4+5 x+x^2\right )\right )\right )}{x \left (4+5 x+x^2\right )} \, dx\\ &=\int \left (\frac {64 e^{-x^2+x^4}}{4+5 x+x^2}+\frac {24 e^{-x^2+x^4}}{x \left (4+5 x+x^2\right )}+\frac {23 e^{-x^2+x^4} x}{4+5 x+x^2}-\frac {7 e^{-x^2+x^4} x^2}{4+5 x+x^2}-\frac {10 e^{-x^2+x^4} x^3}{4+5 x+x^2}+\frac {14 e^{-x^2+x^4} x^4}{4+5 x+x^2}+\frac {20 e^{-x^2+x^4} x^5}{4+5 x+x^2}+\frac {4 e^{-x^2+x^4} x^6}{4+5 x+x^2}+12 e^{-x^2+x^4} x \left (-1+2 x^2\right ) \log \left (x \left (4+5 x+x^2\right )\right )\right ) \, dx\\ &=4 \int \frac {e^{-x^2+x^4} x^6}{4+5 x+x^2} \, dx-7 \int \frac {e^{-x^2+x^4} x^2}{4+5 x+x^2} \, dx-10 \int \frac {e^{-x^2+x^4} x^3}{4+5 x+x^2} \, dx+12 \int e^{-x^2+x^4} x \left (-1+2 x^2\right ) \log \left (x \left (4+5 x+x^2\right )\right ) \, dx+14 \int \frac {e^{-x^2+x^4} x^4}{4+5 x+x^2} \, dx+20 \int \frac {e^{-x^2+x^4} x^5}{4+5 x+x^2} \, dx+23 \int \frac {e^{-x^2+x^4} x}{4+5 x+x^2} \, dx+24 \int \frac {e^{-x^2+x^4}}{x \left (4+5 x+x^2\right )} \, dx+64 \int \frac {e^{-x^2+x^4}}{4+5 x+x^2} \, dx\\ &=6 e^{-x^2+x^4} \log \left (x \left (4+5 x+x^2\right )\right )+4 \int \left (341 e^{-x^2+x^4}-85 e^{-x^2+x^4} x+21 e^{-x^2+x^4} x^2-5 e^{-x^2+x^4} x^3+e^{-x^2+x^4} x^4-\frac {e^{-x^2+x^4} (1364+1365 x)}{4+5 x+x^2}\right ) \, dx-7 \int \left (e^{-x^2+x^4}-\frac {e^{-x^2+x^4} (4+5 x)}{4+5 x+x^2}\right ) \, dx-10 \int \left (-5 e^{-x^2+x^4}+e^{-x^2+x^4} x+\frac {e^{-x^2+x^4} (20+21 x)}{4+5 x+x^2}\right ) \, dx-12 \int \frac {e^{-x^2+x^4} \left (4+10 x+3 x^2\right )}{2 x \left (4+5 x+x^2\right )} \, dx+14 \int \left (21 e^{-x^2+x^4}-5 e^{-x^2+x^4} x+e^{-x^2+x^4} x^2-\frac {e^{-x^2+x^4} (84+85 x)}{4+5 x+x^2}\right ) \, dx+20 \int \left (-85 e^{-x^2+x^4}+21 e^{-x^2+x^4} x-5 e^{-x^2+x^4} x^2+e^{-x^2+x^4} x^3+\frac {e^{-x^2+x^4} (340+341 x)}{4+5 x+x^2}\right ) \, dx+23 \int \left (-\frac {2 e^{-x^2+x^4}}{3 (2+2 x)}+\frac {8 e^{-x^2+x^4}}{3 (8+2 x)}\right ) \, dx+24 \int \left (\frac {e^{-x^2+x^4}}{4 x}-\frac {e^{-x^2+x^4}}{3 (1+x)}+\frac {e^{-x^2+x^4}}{12 (4+x)}\right ) \, dx+64 \int \left (-\frac {2 e^{-x^2+x^4}}{3 (-2-2 x)}-\frac {2 e^{-x^2+x^4}}{3 (8+2 x)}\right ) \, dx\\ &=6 e^{-x^2+x^4} \log \left (x \left (4+5 x+x^2\right )\right )+2 \int \frac {e^{-x^2+x^4}}{4+x} \, dx+4 \int e^{-x^2+x^4} x^4 \, dx-4 \int \frac {e^{-x^2+x^4} (1364+1365 x)}{4+5 x+x^2} \, dx+6 \int \frac {e^{-x^2+x^4}}{x} \, dx-6 \int \frac {e^{-x^2+x^4} \left (4+10 x+3 x^2\right )}{x \left (4+5 x+x^2\right )} \, dx-7 \int e^{-x^2+x^4} \, dx+7 \int \frac {e^{-x^2+x^4} (4+5 x)}{4+5 x+x^2} \, dx-8 \int \frac {e^{-x^2+x^4}}{1+x} \, dx-10 \int e^{-x^2+x^4} x \, dx-10 \int \frac {e^{-x^2+x^4} (20+21 x)}{4+5 x+x^2} \, dx+14 \int e^{-x^2+x^4} x^2 \, dx-14 \int \frac {e^{-x^2+x^4} (84+85 x)}{4+5 x+x^2} \, dx-\frac {46}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx+20 \int \frac {e^{-x^2+x^4} (340+341 x)}{4+5 x+x^2} \, dx-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{-2-2 x} \, dx-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+50 \int e^{-x^2+x^4} \, dx+\frac {184}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx-70 \int e^{-x^2+x^4} x \, dx+84 \int e^{-x^2+x^4} x^2 \, dx-100 \int e^{-x^2+x^4} x^2 \, dx+294 \int e^{-x^2+x^4} \, dx-340 \int e^{-x^2+x^4} x \, dx+420 \int e^{-x^2+x^4} x \, dx+1364 \int e^{-x^2+x^4} \, dx-1700 \int e^{-x^2+x^4} \, dx\\ &=6 e^{-x^2+x^4} \log \left (x \left (4+5 x+x^2\right )\right )+2 \int \frac {e^{-x^2+x^4}}{4+x} \, dx+3 \operatorname {Subst}\left (\int \frac {e^{-x+x^2}}{x} \, dx,x,x^2\right )+4 \int e^{-x^2+x^4} x^4 \, dx-4 \int \left (-\frac {2 e^{-x^2+x^4}}{3 (2+2 x)}+\frac {8192 e^{-x^2+x^4}}{3 (8+2 x)}\right ) \, dx-5 \operatorname {Subst}\left (\int e^{-x+x^2} \, dx,x,x^2\right )-6 \int \left (\frac {e^{-x^2+x^4}}{x}+\frac {e^{-x^2+x^4}}{1+x}+\frac {e^{-x^2+x^4}}{4+x}\right ) \, dx-7 \int e^{-x^2+x^4} \, dx+7 \int \left (-\frac {2 e^{-x^2+x^4}}{3 (2+2 x)}+\frac {32 e^{-x^2+x^4}}{3 (8+2 x)}\right ) \, dx-8 \int \frac {e^{-x^2+x^4}}{1+x} \, dx-10 \int \left (-\frac {2 e^{-x^2+x^4}}{3 (2+2 x)}+\frac {128 e^{-x^2+x^4}}{3 (8+2 x)}\right ) \, dx+14 \int e^{-x^2+x^4} x^2 \, dx-14 \int \left (-\frac {2 e^{-x^2+x^4}}{3 (2+2 x)}+\frac {512 e^{-x^2+x^4}}{3 (8+2 x)}\right ) \, dx-\frac {46}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx+20 \int \left (-\frac {2 e^{-x^2+x^4}}{3 (2+2 x)}+\frac {2048 e^{-x^2+x^4}}{3 (8+2 x)}\right ) \, dx-35 \operatorname {Subst}\left (\int e^{-x+x^2} \, dx,x,x^2\right )-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{-2-2 x} \, dx-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+50 \int e^{-x^2+x^4} \, dx+\frac {184}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+84 \int e^{-x^2+x^4} x^2 \, dx-100 \int e^{-x^2+x^4} x^2 \, dx-170 \operatorname {Subst}\left (\int e^{-x+x^2} \, dx,x,x^2\right )+210 \operatorname {Subst}\left (\int e^{-x+x^2} \, dx,x,x^2\right )+294 \int e^{-x^2+x^4} \, dx+1364 \int e^{-x^2+x^4} \, dx-1700 \int e^{-x^2+x^4} \, dx\\ &=6 e^{-x^2+x^4} \log \left (x \left (4+5 x+x^2\right )\right )+2 \int \frac {e^{-x^2+x^4}}{4+x} \, dx+\frac {8}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx+3 \operatorname {Subst}\left (\int \frac {e^{-x+x^2}}{x} \, dx,x,x^2\right )+4 \int e^{-x^2+x^4} x^4 \, dx-\frac {14}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-6 \int \frac {e^{-x^2+x^4}}{x} \, dx-6 \int \frac {e^{-x^2+x^4}}{1+x} \, dx-6 \int \frac {e^{-x^2+x^4}}{4+x} \, dx+\frac {20}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-7 \int e^{-x^2+x^4} \, dx-8 \int \frac {e^{-x^2+x^4}}{1+x} \, dx+\frac {28}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-\frac {40}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx+14 \int e^{-x^2+x^4} x^2 \, dx-\frac {46}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{-2-2 x} \, dx-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+50 \int e^{-x^2+x^4} \, dx+\frac {184}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+\frac {224}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+84 \int e^{-x^2+x^4} x^2 \, dx-100 \int e^{-x^2+x^4} x^2 \, dx+294 \int e^{-x^2+x^4} \, dx-\frac {1280}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+1364 \int e^{-x^2+x^4} \, dx-1700 \int e^{-x^2+x^4} \, dx-\frac {7168}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx-\frac {32768}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+\frac {40960}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx-\frac {5 \operatorname {Subst}\left (\int e^{\frac {1}{4} (-1+2 x)^2} \, dx,x,x^2\right )}{\sqrt [4]{e}}-\frac {35 \operatorname {Subst}\left (\int e^{\frac {1}{4} (-1+2 x)^2} \, dx,x,x^2\right )}{\sqrt [4]{e}}-\frac {170 \operatorname {Subst}\left (\int e^{\frac {1}{4} (-1+2 x)^2} \, dx,x,x^2\right )}{\sqrt [4]{e}}+\frac {210 \operatorname {Subst}\left (\int e^{\frac {1}{4} (-1+2 x)^2} \, dx,x,x^2\right )}{\sqrt [4]{e}}\\ &=6 e^{-x^2+x^4} \log \left (x \left (4+5 x+x^2\right )\right )+2 \int \frac {e^{-x^2+x^4}}{4+x} \, dx+\frac {8}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx+4 \int e^{-x^2+x^4} x^4 \, dx-\frac {14}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-6 \int \frac {e^{-x^2+x^4}}{1+x} \, dx-6 \int \frac {e^{-x^2+x^4}}{4+x} \, dx+\frac {20}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-7 \int e^{-x^2+x^4} \, dx-8 \int \frac {e^{-x^2+x^4}}{1+x} \, dx+\frac {28}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-\frac {40}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx+14 \int e^{-x^2+x^4} x^2 \, dx-\frac {46}{3} \int \frac {e^{-x^2+x^4}}{2+2 x} \, dx-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{-2-2 x} \, dx-\frac {128}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+50 \int e^{-x^2+x^4} \, dx+\frac {184}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+\frac {224}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+84 \int e^{-x^2+x^4} x^2 \, dx-100 \int e^{-x^2+x^4} x^2 \, dx+294 \int e^{-x^2+x^4} \, dx-\frac {1280}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+1364 \int e^{-x^2+x^4} \, dx-1700 \int e^{-x^2+x^4} \, dx-\frac {7168}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx-\frac {32768}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx+\frac {40960}{3} \int \frac {e^{-x^2+x^4}}{8+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 27, normalized size = 1.04 \begin {gather*} e^{-x^2+x^4} \left (x+6 \log \left (x \left (4+5 x+x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 28, normalized size = 1.08 \begin {gather*} e^{\left (x^{4} - x^{2} + \log \left (x + 6 \, \log \left (x^{3} + 5 \, x^{2} + 4 \, x\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.91, size = 28, normalized size = 1.08 \begin {gather*} e^{\left (x^{4} - x^{2} + \log \left (x + 6 \, \log \left (x^{3} + 5 \, x^{2} + 4 \, x\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.07, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (24 x^{6}+120 x^{5}+84 x^{4}-60 x^{3}-48 x^{2}\right ) \ln \left (x^{3}+5 x^{2}+4 x \right )+4 x^{7}+20 x^{6}+14 x^{5}-10 x^{4}-7 x^{3}+23 x^{2}+64 x +24\right ) {\mathrm e}^{\ln \left (6 \ln \left (x^{3}+5 x^{2}+4 x \right )+x \right )+x^{4}-x^{2}}}{\left (6 x^{3}+30 x^{2}+24 x \right ) \ln \left (x^{3}+5 x^{2}+4 x \right )+x^{4}+5 x^{3}+4 x^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 29, normalized size = 1.12 \begin {gather*} {\left (x + 6 \, \log \left (x + 4\right ) + 6 \, \log \left (x + 1\right ) + 6 \, \log \relax (x)\right )} e^{\left (x^{4} - x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\ln \left (x+6\,\ln \left (x^3+5\,x^2+4\,x\right )\right )-x^2+x^4}\,\left (64\,x+\ln \left (x^3+5\,x^2+4\,x\right )\,\left (24\,x^6+120\,x^5+84\,x^4-60\,x^3-48\,x^2\right )+23\,x^2-7\,x^3-10\,x^4+14\,x^5+20\,x^6+4\,x^7+24\right )}{\ln \left (x^3+5\,x^2+4\,x\right )\,\left (6\,x^3+30\,x^2+24\,x\right )+4\,x^2+5\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 24, normalized size = 0.92 \begin {gather*} \left (x + 6 \log {\left (x^{3} + 5 x^{2} + 4 x \right )}\right ) e^{x^{4} - x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________