Optimal. Leaf size=29 \[ \frac {1}{5 (-2+x) \left (1-2 e^2+2 x\right ) (5+x \log (3))} \]
________________________________________________________________________________________
Rubi [B] time = 0.29, antiderivative size = 102, normalized size of antiderivative = 3.52, number of steps used = 2, number of rules used = 1, integrand size = 232, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.004, Rules used = {2074} \begin {gather*} \frac {\log ^2(3)}{5 (5+\log (9)) \left (10-\log (3)+e^2 \log (9)\right ) (x \log (3)+5)}-\frac {4}{5 \left (5-2 e^2\right ) \left (2 x-2 e^2+1\right ) \left (10-\log (3)+e^2 \log (9)\right )}-\frac {1}{5 \left (5-2 e^2\right ) (2-x) (5+\log (9))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{5 \left (-5+2 e^2\right ) (-2+x)^2 (5+\log (9))}+\frac {\log ^3(3)}{5 (5+x \log (3))^2 (5+\log (9)) \left (-10+\log (3)-e^2 \log (9)\right )}-\frac {8}{5 \left (-5+2 e^2\right ) \left (-1+2 e^2-2 x\right )^2 \left (10-\log (3)+e^2 \log (9)\right )}\right ) \, dx\\ &=-\frac {1}{5 \left (5-2 e^2\right ) (2-x) (5+\log (9))}-\frac {4}{5 \left (5-2 e^2\right ) \left (1-2 e^2+2 x\right ) \left (10-\log (3)+e^2 \log (9)\right )}+\frac {\log ^2(3)}{5 (5+x \log (3)) (5+\log (9)) \left (10-\log (3)+e^2 \log (9)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.32, size = 151, normalized size = 5.21 \begin {gather*} \frac {1}{5} \left (\frac {25-e^2 (10+\log (81))+\log (59049)}{\left (5-2 e^2\right )^2 (-2+x) (5+\log (9))^2}-\frac {4 \left (-50+e^4 \log (81)+\log (243)-e^2 (-20+\log (531441))\right )}{\left (5-2 e^2\right )^2 \left (-1+2 e^2-2 x\right ) \left (10-\log (3)+e^2 \log (9)\right )^2}+\frac {\log ^2(3) \left (50-\log (3) \log (9)+e^2 \left (4 \log ^2(3)+\log (59049)\right )+\log (14348907)\right )}{(5+x \log (3)) (5+\log (9))^2 \left (10-\log (3)+e^2 \log (9)\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 49, normalized size = 1.69 \begin {gather*} \frac {1}{5 \, {\left (10 \, x^{2} - 10 \, {\left (x - 2\right )} e^{2} + {\left (2 \, x^{3} - 3 \, x^{2} - 2 \, {\left (x^{2} - 2 \, x\right )} e^{2} - 2 \, x\right )} \log \relax (3) - 15 \, x - 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 4.56, size = 27, normalized size = 0.93
method | result | size |
norman | \(-\frac {1}{5 \left (x -2\right ) \left (2 \,{\mathrm e}^{2}-2 x -1\right ) \left (x \ln \relax (3)+5\right )}\) | \(27\) |
risch | \(-\frac {1}{10 \left (x^{2} {\mathrm e}^{2} \ln \relax (3)-x^{3} \ln \relax (3)-2 x \,{\mathrm e}^{2} \ln \relax (3)+\frac {3 x^{2} \ln \relax (3)}{2}+x \ln \relax (3)+5 \,{\mathrm e}^{2} x -5 x^{2}-10 \,{\mathrm e}^{2}+\frac {15 x}{2}+5\right )}\) | \(57\) |
gosper | \(-\frac {1}{5 \left (2 x^{2} {\mathrm e}^{2} \ln \relax (3)-2 x^{3} \ln \relax (3)-4 x \,{\mathrm e}^{2} \ln \relax (3)+3 x^{2} \ln \relax (3)+10 \,{\mathrm e}^{2} x +2 x \ln \relax (3)-10 x^{2}-20 \,{\mathrm e}^{2}+15 x +10\right )}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 51, normalized size = 1.76 \begin {gather*} \frac {1}{5 \, {\left (2 \, x^{3} \log \relax (3) - {\left ({\left (2 \, e^{2} + 3\right )} \log \relax (3) - 10\right )} x^{2} + {\left (2 \, {\left (2 \, e^{2} - 1\right )} \log \relax (3) - 10 \, e^{2} - 15\right )} x + 20 \, e^{2} - 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.85, size = 95, normalized size = 3.28 \begin {gather*} \frac {4}{5\,\left (2\,{\mathrm {e}}^2-5\right )\,\left (2\,{\mathrm {e}}^2\,\ln \relax (3)-\ln \relax (3)+10\right )\,\left (2\,x-2\,{\mathrm {e}}^2+1\right )}-\frac {1}{5\,\left (2\,{\mathrm {e}}^2-5\right )\,\left (2\,\ln \relax (3)+5\right )\,\left (x-2\right )}+\frac {{\ln \relax (3)}^2}{5\,\left (2\,\ln \relax (3)+5\right )\,\left (x\,\ln \relax (3)+5\right )\,\left (2\,{\mathrm {e}}^2\,\ln \relax (3)-\ln \relax (3)+10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 10.33, size = 56, normalized size = 1.93 \begin {gather*} \frac {1}{10 x^{3} \log {\relax (3 )} + x^{2} \left (- 10 e^{2} \log {\relax (3 )} - 15 \log {\relax (3 )} + 50\right ) + x \left (- 50 e^{2} - 75 - 10 \log {\relax (3 )} + 20 e^{2} \log {\relax (3 )}\right ) - 50 + 100 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________