Optimal. Leaf size=25 \[ 100 e^{10 \left (-x+\frac {5 \left (2 e^2+x\right )}{-4+x}\right )} x \]
________________________________________________________________________________________
Rubi [F] time = 0.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} \left (1600-36800 x-10000 e^2 x+8100 x^2-1000 x^3\right )}{16-8 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} \left (1600+\left (-36800-10000 e^2\right ) x+8100 x^2-1000 x^3\right )}{16-8 x+x^2} \, dx\\ &=\int \frac {e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} \left (1600+\left (-36800-10000 e^2\right ) x+8100 x^2-1000 x^3\right )}{(-4+x)^2} \, dx\\ &=\int \frac {e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} \left (1600-400 \left (92+25 e^2\right ) x+8100 x^2-1000 x^3\right )}{(4-x)^2} \, dx\\ &=\int \left (100 e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}}-\frac {40000 e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} \left (2+e^2\right )}{(-4+x)^2}-\frac {10000 e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} \left (2+e^2\right )}{-4+x}-1000 e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} x\right ) \, dx\\ &=100 \int e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} \, dx-1000 \int e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}} x \, dx-\left (10000 \left (2+e^2\right )\right ) \int \frac {e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}}}{-4+x} \, dx-\left (40000 \left (2+e^2\right )\right ) \int \frac {e^{\frac {2 \left (50 e^2+45 x-5 x^2\right )}{-4+x}}}{(-4+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 23, normalized size = 0.92 \begin {gather*} 100 e^{\frac {100 e^2-10 (-9+x) x}{-4+x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.04, size = 22, normalized size = 0.88 \begin {gather*} 100 \, x e^{\left (-\frac {10 \, {\left (x^{2} - 9 \, x - 10 \, e^{2}\right )}}{x - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 30, normalized size = 1.20 \begin {gather*} 100 \, x e^{\left (-\frac {5 \, {\left (2 \, x^{2} - 5 \, x e^{2} - 18 \, x\right )}}{x - 4} - 25 \, e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 25, normalized size = 1.00
method | result | size |
risch | \(100 x \,{\mathrm e}^{\frac {-10 x^{2}+100 \,{\mathrm e}^{2}+90 x}{x -4}}\) | \(25\) |
gosper | \(100 x \,{\mathrm e}^{\frac {-10 x^{2}+100 \,{\mathrm e}^{2}+90 x}{x -4}}\) | \(27\) |
norman | \(\frac {-400 x \,{\mathrm e}^{\frac {-10 x^{2}+100 \,{\mathrm e}^{2}+90 x}{x -4}}+100 x^{2} {\mathrm e}^{\frac {-10 x^{2}+100 \,{\mathrm e}^{2}+90 x}{x -4}}}{x -4}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 25, normalized size = 1.00 \begin {gather*} 100 \, x e^{\left (-10 \, x + \frac {100 \, e^{2}}{x - 4} + \frac {200}{x - 4} + 50\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.58, size = 23, normalized size = 0.92 \begin {gather*} 100\,x\,{\mathrm {e}}^{\frac {-10\,x^2+90\,x+100\,{\mathrm {e}}^2}{x-4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 20, normalized size = 0.80 \begin {gather*} 100 x e^{\frac {2 \left (- 5 x^{2} + 45 x + 50 e^{2}\right )}{x - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________