Optimal. Leaf size=31 \[ \frac {e^{-\frac {3+e^x}{3 \left (e^{x^2}-2 x\right )}} \log (5)}{16 x^2} \]
________________________________________________________________________________________
Rubi [B] time = 24.69, antiderivative size = 137, normalized size of antiderivative = 4.42, number of steps used = 3, number of rules used = 3, integrand size = 126, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6741, 12, 2288} \begin {gather*} \frac {e^{-\frac {e^x+3}{3 \left (e^{x^2}-2 x\right )}} \left (-6 e^{x^2} x^2-2 e^x x^2-2 e^{x^2+x} x^2+e^{x^2+x} x+2 e^x x+6 x\right ) \log (5)}{16 \left (e^{x^2}-2 x\right )^2 x^3 \left (\frac {2 \left (e^x+3\right ) \left (1-e^{x^2} x\right )}{\left (e^{x^2}-2 x\right )^2}+\frac {e^x}{e^{x^2}-2 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {3+e^x}{3 \left (e^{x^2}-2 x\right )}} \left (-6 e^{2 x^2}-6 x-2 e^x x+24 e^{x^2} x-e^{x+x^2} x-24 x^2+2 e^x x^2+6 e^{x^2} x^2+2 e^{x+x^2} x^2\right ) \log (5)}{48 \left (e^{x^2}-2 x\right )^2 x^3} \, dx\\ &=\frac {1}{48} \log (5) \int \frac {e^{-\frac {3+e^x}{3 \left (e^{x^2}-2 x\right )}} \left (-6 e^{2 x^2}-6 x-2 e^x x+24 e^{x^2} x-e^{x+x^2} x-24 x^2+2 e^x x^2+6 e^{x^2} x^2+2 e^{x+x^2} x^2\right )}{\left (e^{x^2}-2 x\right )^2 x^3} \, dx\\ &=\frac {e^{-\frac {3+e^x}{3 \left (e^{x^2}-2 x\right )}} \left (6 x+2 e^x x+e^{x+x^2} x-2 e^x x^2-6 e^{x^2} x^2-2 e^{x+x^2} x^2\right ) \log (5)}{16 \left (e^{x^2}-2 x\right )^2 x^3 \left (\frac {e^x}{e^{x^2}-2 x}+\frac {2 \left (3+e^x\right ) \left (1-e^{x^2} x\right )}{\left (e^{x^2}-2 x\right )^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 33, normalized size = 1.06 \begin {gather*} \frac {e^{\frac {-3-e^x}{3 \left (e^{x^2}-2 x\right )}} \log (5)}{16 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 26, normalized size = 0.84 \begin {gather*} \frac {e^{\left (\frac {e^{x} + 3}{3 \, {\left (2 \, x - e^{\left (x^{2}\right )}\right )}}\right )} \log \relax (5)}{16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.79, size = 26, normalized size = 0.84 \begin {gather*} \frac {e^{\left (\frac {e^{x} + 3}{3 \, {\left (2 \, x - e^{\left (x^{2}\right )}\right )}}\right )} \log \relax (5)}{16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 27, normalized size = 0.87
method | result | size |
risch | \(\frac {\ln \relax (5) {\mathrm e}^{\frac {3+{\mathrm e}^{x}}{-3 \,{\mathrm e}^{x^{2}}+6 x}}}{16 x^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{48} \, \int \frac {{\left (2 \, {\left (x^{2} - x\right )} e^{x} \log \relax (5) + {\left ({\left (2 \, x^{2} - x\right )} e^{x} \log \relax (5) + 6 \, {\left (x^{2} + 4 \, x\right )} \log \relax (5)\right )} e^{\left (x^{2}\right )} - 6 \, {\left (4 \, x^{2} + x\right )} \log \relax (5) - 6 \, e^{\left (2 \, x^{2}\right )} \log \relax (5)\right )} e^{\left (\frac {e^{x} + 3}{3 \, {\left (2 \, x - e^{\left (x^{2}\right )}\right )}}\right )}}{4 \, x^{5} - 4 \, x^{4} e^{\left (x^{2}\right )} + x^{3} e^{\left (2 \, x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.91, size = 36, normalized size = 1.16 \begin {gather*} \frac {{\mathrm {e}}^{\frac {1}{2\,x-{\mathrm {e}}^{x^2}}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{3\,\left (2\,x-{\mathrm {e}}^{x^2}\right )}}\,\ln \relax (5)}{16\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.70, size = 24, normalized size = 0.77 \begin {gather*} \frac {e^{- \frac {e^{x} + 3}{- 6 x + 3 e^{x^{2}}}} \log {\relax (5 )}}{16 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________