Optimal. Leaf size=29 \[ 2+e^{\frac {1}{4} (5-x) x^2}+\frac {2}{1-\frac {1}{x}}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.69, antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 8, number of rules used = 6, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1594, 27, 12, 6742, 6706, 893} \begin {gather*} e^{\frac {1}{4} (5-x) x^2}-\frac {2}{1-x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 893
Rule 1594
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4-16 x+4 x^2+e^{\frac {1}{4} \left (5 x^2-x^3\right )} \left (10 x^2-23 x^3+16 x^4-3 x^5\right )}{x \left (4-8 x+4 x^2\right )} \, dx\\ &=\int \frac {4-16 x+4 x^2+e^{\frac {1}{4} \left (5 x^2-x^3\right )} \left (10 x^2-23 x^3+16 x^4-3 x^5\right )}{4 (-1+x)^2 x} \, dx\\ &=\frac {1}{4} \int \frac {4-16 x+4 x^2+e^{\frac {1}{4} \left (5 x^2-x^3\right )} \left (10 x^2-23 x^3+16 x^4-3 x^5\right )}{(-1+x)^2 x} \, dx\\ &=\frac {1}{4} \int \left (-e^{-\frac {1}{4} (-5+x) x^2} x (-10+3 x)+\frac {4 \left (1-4 x+x^2\right )}{(-1+x)^2 x}\right ) \, dx\\ &=-\left (\frac {1}{4} \int e^{-\frac {1}{4} (-5+x) x^2} x (-10+3 x) \, dx\right )+\int \frac {1-4 x+x^2}{(-1+x)^2 x} \, dx\\ &=e^{\frac {1}{4} (5-x) x^2}+\int \left (-\frac {2}{(-1+x)^2}+\frac {1}{x}\right ) \, dx\\ &=e^{\frac {1}{4} (5-x) x^2}-\frac {2}{1-x}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 0.93 \begin {gather*} e^{\frac {5 x^2}{4}-\frac {x^3}{4}}+\frac {2}{-1+x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 30, normalized size = 1.03 \begin {gather*} \frac {{\left (x - 1\right )} e^{\left (-\frac {1}{4} \, x^{3} + \frac {5}{4} \, x^{2}\right )} + {\left (x - 1\right )} \log \relax (x) + 2}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 44, normalized size = 1.52 \begin {gather*} \frac {x e^{\left (-\frac {1}{4} \, x^{3} + \frac {5}{4} \, x^{2}\right )} + x \log \relax (x) - e^{\left (-\frac {1}{4} \, x^{3} + \frac {5}{4} \, x^{2}\right )} - \log \relax (x) + 2}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 20, normalized size = 0.69
method | result | size |
risch | \(\frac {2}{x -1}+\ln \relax (x )+{\mathrm e}^{-\frac {x^{2} \left (x -5\right )}{4}}\) | \(20\) |
norman | \(\frac {{\mathrm e}^{-\frac {1}{4} x^{3}+\frac {5}{4} x^{2}} x -{\mathrm e}^{-\frac {1}{4} x^{3}+\frac {5}{4} x^{2}}+2}{x -1}+\ln \relax (x )\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 22, normalized size = 0.76 \begin {gather*} \frac {2}{x - 1} + e^{\left (-\frac {1}{4} \, x^{3} + \frac {5}{4} \, x^{2}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 22, normalized size = 0.76 \begin {gather*} {\mathrm {e}}^{\frac {5\,x^2}{4}-\frac {x^3}{4}}+\ln \relax (x)+\frac {2}{x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.69 \begin {gather*} e^{- \frac {x^{3}}{4} + \frac {5 x^{2}}{4}} + \log {\relax (x )} + \frac {2}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________