Optimal. Leaf size=23 \[ 5+10 e^{-\frac {1}{4-e \log (x)}} (5-x) x \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 44, normalized size of antiderivative = 1.91, number of steps used = 1, number of rules used = 1, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {2288} \begin {gather*} \frac {10 (5-x) x e^{\frac {1}{e \log (x)-4}} (4-e \log (x))^2}{e^2 \log ^2(x)-8 e \log (x)+16} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {10 e^{\frac {1}{-4+e \log (x)}} (5-x) x (4-e \log (x))^2}{16-8 e \log (x)+e^2 \log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 16, normalized size = 0.70 \begin {gather*} -10 e^{\frac {1}{-4+e \log (x)}} (-5+x) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 19, normalized size = 0.83 \begin {gather*} -10 \, {\left (x^{2} - 5 \, x\right )} e^{\left (\frac {1}{e \log \relax (x) - 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {10 \, {\left ({\left (2 \, x - 5\right )} e^{2} \log \relax (x)^{2} - 8 \, {\left (2 \, x - 5\right )} e \log \relax (x) - {\left (x - 5\right )} e + 32 \, x - 80\right )} e^{\left (\frac {1}{e \log \relax (x) - 4}\right )}}{e^{2} \log \relax (x)^{2} - 8 \, e \log \relax (x) + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 21, normalized size = 0.91
method | result | size |
risch | \(\left (-10 x^{2}+50 x \right ) {\mathrm e}^{\frac {1}{{\mathrm e} \ln \relax (x )-4}}\) | \(21\) |
norman | \(\frac {\left (-200 x +40 x^{2}+50 x \,{\mathrm e} \ln \relax (x )-10 x^{2} {\mathrm e} \ln \relax (x )\right ) {\mathrm e}^{\frac {1}{{\mathrm e} \ln \relax (x )-4}}}{{\mathrm e} \ln \relax (x )-4}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 320 \, x^{2} e^{\left (\frac {1}{e \log \relax (x) - 4} - 1\right )} - 10 \, x^{2} e^{\left (\frac {1}{e \log \relax (x) - 4}\right )} - 800 \, x e^{\left (\frac {1}{e \log \relax (x) - 4} - 1\right )} + 50 \, x e^{\left (\frac {1}{e \log \relax (x) - 4}\right )} - 10 \, \int \frac {{\left ({\left (2 \, x e^{2} - 5 \, e^{2}\right )} \log \relax (x)^{2} - 8 \, {\left (2 \, x e - 5 \, e\right )} \log \relax (x)\right )} e^{\left (\frac {1}{e \log \relax (x) - 4}\right )}}{e^{2} \log \relax (x)^{2} - 8 \, e \log \relax (x) + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {1}{\mathrm {e}\,\ln \relax (x)-4}}\,\left (-{\mathrm {e}}^2\,\left (20\,x-50\right )\,{\ln \relax (x)}^2+\mathrm {e}\,\left (160\,x-400\right )\,\ln \relax (x)-320\,x+\mathrm {e}\,\left (10\,x-50\right )+800\right )}{{\mathrm {e}}^2\,{\ln \relax (x)}^2-8\,\mathrm {e}\,\ln \relax (x)+16} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.41, size = 19, normalized size = 0.83 \begin {gather*} \left (- 10 x^{2} + 50 x\right ) e^{\frac {1}{e \log {\relax (x )} - 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________