Optimal. Leaf size=29 \[ 3-2 x-\log \left (1-\left (5+x+5 \left (-e^x+x\right )\right ) \log (9+\log (5))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2+\left (16-15 e^x+12 x\right ) \log (9+\log (5))}{1+\left (-5+5 e^x-6 x\right ) \log (9+\log (5))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3+\frac {-1-\log (9+\log (5))+6 x \log (9+\log (5))}{-1+5 \log (9+\log (5))-5 e^x \log (9+\log (5))+6 x \log (9+\log (5))}\right ) \, dx\\ &=-3 x+\int \frac {-1-\log (9+\log (5))+6 x \log (9+\log (5))}{-1+5 \log (9+\log (5))-5 e^x \log (9+\log (5))+6 x \log (9+\log (5))} \, dx\\ &=-3 x+\int \left (\frac {1+\log (9+\log (5))}{1-5 \log (9+\log (5))+5 e^x \log (9+\log (5))-6 x \log (9+\log (5))}+\frac {6 x \log (9+\log (5))}{-1+5 \log (9+\log (5))-5 e^x \log (9+\log (5))+6 x \log (9+\log (5))}\right ) \, dx\\ &=-3 x+(6 \log (9+\log (5))) \int \frac {x}{-1+5 \log (9+\log (5))-5 e^x \log (9+\log (5))+6 x \log (9+\log (5))} \, dx+(1+\log (9+\log (5))) \int \frac {1}{1-5 \log (9+\log (5))+5 e^x \log (9+\log (5))-6 x \log (9+\log (5))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 34, normalized size = 1.17 \begin {gather*} -2 x-\log \left (1-5 \log (9+\log (5))+5 e^x \log (9+\log (5))-6 x \log (9+\log (5))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 25, normalized size = 0.86 \begin {gather*} -2 \, x - \log \left (-{\left (6 \, x - 5 \, e^{x} + 5\right )} \log \left (\log \relax (5) + 9\right ) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 33, normalized size = 1.14 \begin {gather*} -2 \, x - \log \left (-6 \, x \log \left (\log \relax (5) + 9\right ) + 5 \, e^{x} \log \left (\log \relax (5) + 9\right ) - 5 \, \log \left (\log \relax (5) + 9\right ) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 34, normalized size = 1.17
method | result | size |
norman | \(-2 x -\ln \left (6 \ln \left (\ln \relax (5)+9\right ) x -5 \ln \left (\ln \relax (5)+9\right ) {\mathrm e}^{x}+5 \ln \left (\ln \relax (5)+9\right )-1\right )\) | \(34\) |
risch | \(-2 x -\ln \left ({\mathrm e}^{x}-\frac {6 \ln \left (\ln \relax (5)+9\right ) x +5 \ln \left (\ln \relax (5)+9\right )-1}{5 \ln \left (\ln \relax (5)+9\right )}\right )\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 42, normalized size = 1.45 \begin {gather*} -2 \, x - \log \left (-\frac {6 \, x \log \left (\log \relax (5) + 9\right ) - 5 \, e^{x} \log \left (\log \relax (5) + 9\right ) + 5 \, \log \left (\log \relax (5) + 9\right ) - 1}{5 \, \log \left (\log \relax (5) + 9\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.40, size = 33, normalized size = 1.14 \begin {gather*} -2\,x-\ln \left (5\,\ln \left (\ln \relax (5)+9\right )+6\,x\,\ln \left (\ln \relax (5)+9\right )-5\,\ln \left (\ln \relax (5)+9\right )\,{\mathrm {e}}^x-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 37, normalized size = 1.28 \begin {gather*} - 2 x - \log {\left (\frac {- 6 x \log {\left (\log {\relax (5 )} + 9 \right )} - 5 \log {\left (\log {\relax (5 )} + 9 \right )} + 1}{5 \log {\left (\log {\relax (5 )} + 9 \right )}} + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________