Optimal. Leaf size=30 \[ 1+e^{4+\frac {3}{x}}+x+5 x^2+4 \left (x-x^2\right )-\log (4) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 16, normalized size of antiderivative = 0.53, number of steps used = 3, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {14, 2209} \begin {gather*} x^2+5 x+e^{\frac {3}{x}+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5-\frac {3 e^{4+\frac {3}{x}}}{x^2}+2 x\right ) \, dx\\ &=5 x+x^2-3 \int \frac {e^{4+\frac {3}{x}}}{x^2} \, dx\\ &=e^{4+\frac {3}{x}}+5 x+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.53 \begin {gather*} e^{4+\frac {3}{x}}+5 x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 17, normalized size = 0.57 \begin {gather*} x^{2} + 5 \, x + e^{\left (\frac {4 \, x + 3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 91, normalized size = 3.03 \begin {gather*} \frac {\frac {{\left (4 \, x + 3\right )}^{2} e^{\left (\frac {4 \, x + 3}{x}\right )}}{x^{2}} - \frac {8 \, {\left (4 \, x + 3\right )} e^{\left (\frac {4 \, x + 3}{x}\right )}}{x} + \frac {15 \, {\left (4 \, x + 3\right )}}{x} + 16 \, e^{\left (\frac {4 \, x + 3}{x}\right )} - 51}{\frac {{\left (4 \, x + 3\right )}^{2}}{x^{2}} - \frac {8 \, {\left (4 \, x + 3\right )}}{x} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 16, normalized size = 0.53
method | result | size |
derivativedivides | \(x^{2}+5 x +{\mathrm e}^{4+\frac {3}{x}}\) | \(16\) |
default | \(x^{2}+5 x +{\mathrm e}^{4+\frac {3}{x}}\) | \(16\) |
risch | \(x^{2}+5 x +{\mathrm e}^{\frac {3+4 x}{x}}\) | \(18\) |
norman | \(\frac {x^{3}+{\mathrm e}^{\frac {3+4 x}{x}} x +5 x^{2}}{x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 15, normalized size = 0.50 \begin {gather*} x^{2} + 5 \, x + e^{\left (\frac {3}{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.20, size = 16, normalized size = 0.53 \begin {gather*} 5\,x+{\mathrm {e}}^4\,{\mathrm {e}}^{3/x}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.47 \begin {gather*} x^{2} + 5 x + e^{\frac {4 x + 3}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________