Optimal. Leaf size=22 \[ x \left (2+e^{6+x}+e^{-e^{x^2}} x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-e^{x^2}} \left (3 x^2-2 e^{x^2} x^4+e^{e^{x^2}} \left (2+e^{6+x} (1+x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2+e^{6+x}+e^{6+x} x+3 e^{-e^{x^2}} x^2-2 e^{-e^{x^2}+x^2} x^4\right ) \, dx\\ &=2 x-2 \int e^{-e^{x^2}+x^2} x^4 \, dx+3 \int e^{-e^{x^2}} x^2 \, dx+\int e^{6+x} \, dx+\int e^{6+x} x \, dx\\ &=e^{6+x}+2 x+e^{6+x} x-2 \int e^{-e^{x^2}+x^2} x^4 \, dx+3 \int e^{-e^{x^2}} x^2 \, dx-\int e^{6+x} \, dx\\ &=2 x+e^{6+x} x-2 \int e^{-e^{x^2}+x^2} x^4 \, dx+3 \int e^{-e^{x^2}} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.50, size = 24, normalized size = 1.09 \begin {gather*} 2 x+e^{6+x} x+e^{-e^{x^2}} x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 28, normalized size = 1.27 \begin {gather*} {\left (x^{3} + {\left (x e^{\left (x + 6\right )} + 2 \, x\right )} e^{\left (e^{\left (x^{2}\right )}\right )}\right )} e^{\left (-e^{\left (x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.95 \begin {gather*} x^{3} e^{\left (-e^{\left (x^{2}\right )}\right )} + x e^{\left (x + 6\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{x +6} x +2 x +x^{3} {\mathrm e}^{-{\mathrm e}^{x^{2}}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 31, normalized size = 1.41 \begin {gather*} x^{3} e^{\left (-e^{\left (x^{2}\right )}\right )} + {\left (x e^{6} - e^{6}\right )} e^{x} + 2 \, x + e^{\left (x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.24, size = 21, normalized size = 0.95 \begin {gather*} 2\,x+x^3\,{\mathrm {e}}^{-{\mathrm {e}}^{x^2}}+x\,{\mathrm {e}}^6\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.76, size = 19, normalized size = 0.86 \begin {gather*} x^{3} e^{- e^{x^{2}}} + x e^{x + 6} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________