Optimal. Leaf size=19 \[ (-5-x) x \log \left (1-\frac {x^2}{5}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25-5 x+10 x^2+2 x^3+\left (-25-10 x+5 x^2+2 x^3+(-25-10 x) \log (x)\right ) \log \left (\frac {1}{5} \left (5-x^2+5 \log (x)\right )\right )}{5-x^2+5 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {25+5 x-10 x^2-2 x^3}{-5+x^2-5 \log (x)}-(5+2 x) \log \left (1-\frac {x^2}{5}+\log (x)\right )\right ) \, dx\\ &=\int \frac {25+5 x-10 x^2-2 x^3}{-5+x^2-5 \log (x)} \, dx-\int (5+2 x) \log \left (1-\frac {x^2}{5}+\log (x)\right ) \, dx\\ &=\int \left (\frac {25}{-5+x^2-5 \log (x)}+\frac {5 x}{-5+x^2-5 \log (x)}-\frac {10 x^2}{-5+x^2-5 \log (x)}-\frac {2 x^3}{-5+x^2-5 \log (x)}\right ) \, dx-\int \left (5 \log \left (1-\frac {x^2}{5}+\log (x)\right )+2 x \log \left (1-\frac {x^2}{5}+\log (x)\right )\right ) \, dx\\ &=-\left (2 \int \frac {x^3}{-5+x^2-5 \log (x)} \, dx\right )-2 \int x \log \left (1-\frac {x^2}{5}+\log (x)\right ) \, dx+5 \int \frac {x}{-5+x^2-5 \log (x)} \, dx-5 \int \log \left (1-\frac {x^2}{5}+\log (x)\right ) \, dx-10 \int \frac {x^2}{-5+x^2-5 \log (x)} \, dx+25 \int \frac {1}{-5+x^2-5 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 18, normalized size = 0.95 \begin {gather*} -x (5+x) \log \left (1-\frac {x^2}{5}+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 19, normalized size = 1.00 \begin {gather*} -{\left (x^{2} + 5 \, x\right )} \log \left (-\frac {1}{5} \, x^{2} + \log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 33, normalized size = 1.74 \begin {gather*} x^{2} \log \relax (5) + 5 \, x \log \relax (5) - {\left (x^{2} + 5 \, x\right )} \log \left (-x^{2} + 5 \, \log \relax (x) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 1.11
method | result | size |
risch | \(\left (-x^{2}-5 x \right ) \ln \left (\ln \relax (x )-\frac {x^{2}}{5}+1\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 33, normalized size = 1.74 \begin {gather*} x^{2} \log \relax (5) + 5 \, x \log \relax (5) - {\left (x^{2} + 5 \, x\right )} \log \left (-x^{2} + 5 \, \log \relax (x) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.56, size = 16, normalized size = 0.84 \begin {gather*} -x\,\ln \left (\ln \relax (x)-\frac {x^2}{5}+1\right )\,\left (x+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 19, normalized size = 1.00 \begin {gather*} \left (- x^{2} - 5 x\right ) \log {\left (- \frac {x^{2}}{5} + \log {\relax (x )} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________