Optimal. Leaf size=34 \[ \frac {8 \left (-\frac {1}{4 x}-x+\log \left (e^{\frac {e^x}{5}}-x\right )\right )}{x \log (2)} \]
________________________________________________________________________________________
Rubi [A] time = 2.11, antiderivative size = 33, normalized size of antiderivative = 0.97, number of steps used = 12, number of rules used = 5, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {6741, 12, 6742, 14, 2551} \begin {gather*} \frac {8 \log \left (e^{\frac {e^x}{5}}-x\right )}{x \log (2)}-\frac {2}{x^2 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2551
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20 x-40 x^2+e^{\frac {e^x}{5}} \left (20+8 e^x x^2\right )+\left (-40 e^{\frac {e^x}{5}} x+40 x^2\right ) \log \left (e^{\frac {e^x}{5}}-x\right )}{5 \left (e^{\frac {e^x}{5}}-x\right ) x^3 \log (2)} \, dx\\ &=\frac {\int \frac {-20 x-40 x^2+e^{\frac {e^x}{5}} \left (20+8 e^x x^2\right )+\left (-40 e^{\frac {e^x}{5}} x+40 x^2\right ) \log \left (e^{\frac {e^x}{5}}-x\right )}{\left (e^{\frac {e^x}{5}}-x\right ) x^3} \, dx}{5 \log (2)}\\ &=\frac {\int \left (\frac {8 e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x}-\frac {20 \left (-e^{\frac {e^x}{5}}+x+2 x^2+2 e^{\frac {e^x}{5}} x \log \left (e^{\frac {e^x}{5}}-x\right )-2 x^2 \log \left (e^{\frac {e^x}{5}}-x\right )\right )}{\left (e^{\frac {e^x}{5}}-x\right ) x^3}\right ) \, dx}{5 \log (2)}\\ &=\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {4 \int \frac {-e^{\frac {e^x}{5}}+x+2 x^2+2 e^{\frac {e^x}{5}} x \log \left (e^{\frac {e^x}{5}}-x\right )-2 x^2 \log \left (e^{\frac {e^x}{5}}-x\right )}{\left (e^{\frac {e^x}{5}}-x\right ) x^3} \, dx}{\log (2)}\\ &=\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {4 \int \left (\frac {2}{\left (e^{\frac {e^x}{5}}-x\right ) x}+\frac {-1+2 x \log \left (e^{\frac {e^x}{5}}-x\right )}{x^3}\right ) \, dx}{\log (2)}\\ &=\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {4 \int \frac {-1+2 x \log \left (e^{\frac {e^x}{5}}-x\right )}{x^3} \, dx}{\log (2)}-\frac {8 \int \frac {1}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{\log (2)}\\ &=\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {4 \int \left (-\frac {1}{x^3}+\frac {2 \log \left (e^{\frac {e^x}{5}}-x\right )}{x^2}\right ) \, dx}{\log (2)}-\frac {8 \int \frac {1}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{\log (2)}\\ &=-\frac {2}{x^2 \log (2)}+\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {8 \int \frac {1}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{\log (2)}-\frac {8 \int \frac {\log \left (e^{\frac {e^x}{5}}-x\right )}{x^2} \, dx}{\log (2)}\\ &=-\frac {2}{x^2 \log (2)}+\frac {8 \log \left (e^{\frac {e^x}{5}}-x\right )}{x \log (2)}+\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {8 \int \frac {1}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{\log (2)}-\frac {8 \int \frac {-5+e^{\frac {e^x}{5}+x}}{5 \left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{\log (2)}\\ &=-\frac {2}{x^2 \log (2)}+\frac {8 \log \left (e^{\frac {e^x}{5}}-x\right )}{x \log (2)}+\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {8 \int \frac {-5+e^{\frac {e^x}{5}+x}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {8 \int \frac {1}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{\log (2)}\\ &=-\frac {2}{x^2 \log (2)}+\frac {8 \log \left (e^{\frac {e^x}{5}}-x\right )}{x \log (2)}-\frac {8 \int \left (-\frac {5}{\left (e^{\frac {e^x}{5}}-x\right ) x}+\frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x}\right ) \, dx}{5 \log (2)}+\frac {8 \int \frac {e^{\frac {1}{5} \left (e^x+5 x\right )}}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{5 \log (2)}-\frac {8 \int \frac {1}{\left (e^{\frac {e^x}{5}}-x\right ) x} \, dx}{\log (2)}\\ &=-\frac {2}{x^2 \log (2)}+\frac {8 \log \left (e^{\frac {e^x}{5}}-x\right )}{x \log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 33, normalized size = 0.97 \begin {gather*} -\frac {\frac {10}{x^2}-\frac {40 \log \left (e^{\frac {e^x}{5}}-x\right )}{x}}{5 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 24, normalized size = 0.71 \begin {gather*} \frac {2 \, {\left (4 \, x \log \left (-x + e^{\left (\frac {1}{5} \, e^{x}\right )}\right ) - 1\right )}}{x^{2} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 35, normalized size = 1.03 \begin {gather*} \frac {2 \, {\left (4 \, x \log \left (-{\left (x e^{x} - e^{\left (x + \frac {1}{5} \, e^{x}\right )}\right )} e^{\left (-x\right )}\right ) - 1\right )}}{x^{2} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 30, normalized size = 0.88
method | result | size |
risch | \(\frac {8 \ln \left ({\mathrm e}^{\frac {{\mathrm e}^{x}}{5}}-x \right )}{x \ln \relax (2)}-\frac {2}{\ln \relax (2) x^{2}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 24, normalized size = 0.71 \begin {gather*} \frac {2 \, {\left (4 \, x \log \left (-x + e^{\left (\frac {1}{5} \, e^{x}\right )}\right ) - 1\right )}}{x^{2} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.38, size = 23, normalized size = 0.68 \begin {gather*} \frac {8\,x\,\ln \left ({\mathrm {e}}^{\frac {{\mathrm {e}}^x}{5}}-x\right )-2}{x^2\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 24, normalized size = 0.71 \begin {gather*} \frac {8 \log {\left (- x + e^{\frac {e^{x}}{5}} \right )}}{x \log {\relax (2 )}} - \frac {2}{x^{2} \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________