Optimal. Leaf size=26 \[ \frac {x^2 \log ^4(x)}{\left (2+e^x\right )^2}+16 \log \left (\frac {x^3}{2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {384+576 e^x+288 e^{2 x}+48 e^{3 x}+\left (8 x^2+4 e^x x^2\right ) \log ^3(x)+\left (4 x^2+e^x \left (2 x^2-2 x^3\right )\right ) \log ^4(x)}{8 x+12 e^x x+6 e^{2 x} x+e^{3 x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {48}{x}+\frac {4 x \log ^3(x)}{\left (2+e^x\right )^2}-\frac {2 \left (-2+e^x (-1+x)\right ) x \log ^4(x)}{\left (2+e^x\right )^3}\right ) \, dx\\ &=48 \log (x)-2 \int \frac {\left (-2+e^x (-1+x)\right ) x \log ^4(x)}{\left (2+e^x\right )^3} \, dx+4 \int \frac {x \log ^3(x)}{\left (2+e^x\right )^2} \, dx\\ &=48 \log (x)-2 \int \left (\frac {(-1+x) x \log ^4(x)}{\left (2+e^x\right )^2}-\frac {2 x^2 \log ^4(x)}{\left (2+e^x\right )^3}\right ) \, dx+4 \int \frac {x \log ^3(x)}{\left (2+e^x\right )^2} \, dx\\ &=48 \log (x)-2 \int \frac {(-1+x) x \log ^4(x)}{\left (2+e^x\right )^2} \, dx+4 \int \frac {x \log ^3(x)}{\left (2+e^x\right )^2} \, dx+4 \int \frac {x^2 \log ^4(x)}{\left (2+e^x\right )^3} \, dx\\ &=48 \log (x)-2 \int \left (-\frac {x \log ^4(x)}{\left (2+e^x\right )^2}+\frac {x^2 \log ^4(x)}{\left (2+e^x\right )^2}\right ) \, dx+4 \int \frac {x \log ^3(x)}{\left (2+e^x\right )^2} \, dx+4 \int \frac {x^2 \log ^4(x)}{\left (2+e^x\right )^3} \, dx\\ &=48 \log (x)+2 \int \frac {x \log ^4(x)}{\left (2+e^x\right )^2} \, dx-2 \int \frac {x^2 \log ^4(x)}{\left (2+e^x\right )^2} \, dx+4 \int \frac {x \log ^3(x)}{\left (2+e^x\right )^2} \, dx+4 \int \frac {x^2 \log ^4(x)}{\left (2+e^x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 20, normalized size = 0.77 \begin {gather*} 48 \log (x)+\frac {x^2 \log ^4(x)}{\left (2+e^x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 36, normalized size = 1.38 \begin {gather*} \frac {x^{2} \log \relax (x)^{4} + 48 \, {\left (e^{\left (2 \, x\right )} + 4 \, e^{x} + 4\right )} \log \relax (x)}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 40, normalized size = 1.54 \begin {gather*} \frac {x^{2} \log \relax (x)^{4} + 48 \, e^{\left (2 \, x\right )} \log \relax (x) + 192 \, e^{x} \log \relax (x) + 192 \, \log \relax (x)}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.77
method | result | size |
risch | \(\frac {\ln \relax (x )^{4} x^{2}}{\left ({\mathrm e}^{x}+2\right )^{2}}+48 \ln \relax (x )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 25, normalized size = 0.96 \begin {gather*} \frac {x^{2} \log \relax (x)^{4}}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} + 48 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.28, size = 29, normalized size = 1.12 \begin {gather*} \frac {\ln \relax (x)\,\left (48\,{\mathrm {e}}^{2\,x}+192\,{\mathrm {e}}^x+x^2\,{\ln \relax (x)}^3+192\right )}{{\left ({\mathrm {e}}^x+2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 0.92 \begin {gather*} \frac {x^{2} \log {\relax (x )}^{4}}{e^{2 x} + 4 e^{x} + 4} + 48 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________