Optimal. Leaf size=25 \[ e^{3+\frac {2 x^2}{5 \log (x) \left (\frac {2}{x}+\log (x)\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 4.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{10 \log (x)+5 x \log ^2(x)}\right ) \left (-4 x^2+\left (12 x^2-4 x^3\right ) \log (x)+4 x^3 \log ^2(x)\right )}{20 \log ^2(x)+20 x \log ^3(x)+5 x^2 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2 \left (-1+3 \log (x)-x \log (x)+x \log ^2(x)\right )}{5 \log ^2(x) (2+x \log (x))^2} \, dx\\ &=\frac {4}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2 \left (-1+3 \log (x)-x \log (x)+x \log ^2(x)\right )}{\log ^2(x) (2+x \log (x))^2} \, dx\\ &=\frac {4}{5} \int \left (-\frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{4 \log ^2(x)}+\frac {3 \exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{4 \log (x)}+\frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) (-2+x) x^3}{4 (2+x \log (x))^2}-\frac {3 \exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^3}{4 (2+x \log (x))}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{\log ^2(x)} \, dx\right )+\frac {1}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) (-2+x) x^3}{(2+x \log (x))^2} \, dx+\frac {3}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{\log (x)} \, dx-\frac {3}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^3}{2+x \log (x)} \, dx\\ &=-\left (\frac {1}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{\log ^2(x)} \, dx\right )+\frac {1}{5} \int \left (-\frac {2 \exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^3}{(2+x \log (x))^2}+\frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^4}{(2+x \log (x))^2}\right ) \, dx+\frac {3}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{\log (x)} \, dx-\frac {3}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^3}{2+x \log (x)} \, dx\\ &=-\left (\frac {1}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{\log ^2(x)} \, dx\right )+\frac {1}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^4}{(2+x \log (x))^2} \, dx-\frac {2}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^3}{(2+x \log (x))^2} \, dx+\frac {3}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^2}{\log (x)} \, dx-\frac {3}{5} \int \frac {\exp \left (\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{5 \log (x) (2+x \log (x))}\right ) x^3}{2+x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.18, size = 34, normalized size = 1.36 \begin {gather*} e^{\frac {2 x^3+30 \log (x)+15 x \log ^2(x)}{10 \log (x)+5 x \log ^2(x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 33, normalized size = 1.32 \begin {gather*} e^{\left (\frac {2 \, x^{3} + 15 \, x \log \relax (x)^{2} + 30 \, \log \relax (x)}{5 \, {\left (x \log \relax (x)^{2} + 2 \, \log \relax (x)\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 57, normalized size = 2.28 \begin {gather*} e^{\left (\frac {2 \, x^{3}}{5 \, {\left (x \log \relax (x)^{2} + 2 \, \log \relax (x)\right )}} + \frac {3 \, x \log \relax (x)^{2}}{x \log \relax (x)^{2} + 2 \, \log \relax (x)} + \frac {6 \, \log \relax (x)}{x \log \relax (x)^{2} + 2 \, \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 33, normalized size = 1.32
method | result | size |
risch | \({\mathrm e}^{\frac {15 x \ln \relax (x )^{2}+30 \ln \relax (x )+2 x^{3}}{5 \ln \relax (x ) \left (x \ln \relax (x )+2\right )}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 42, normalized size = 1.68 \begin {gather*} e^{\left (\frac {2 \, x^{2}}{5 \, \log \relax (x)^{2}} - \frac {16}{5 \, {\left (x \log \relax (x)^{5} + 2 \, \log \relax (x)^{4}\right )}} - \frac {4 \, x}{5 \, \log \relax (x)^{3}} + \frac {8}{5 \, \log \relax (x)^{4}} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.42, size = 51, normalized size = 2.04 \begin {gather*} x^{\frac {3\,x}{x\,\ln \relax (x)+2}}\,x^{\frac {6}{x\,{\ln \relax (x)}^2+2\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {2\,x^3}{5\,x\,{\ln \relax (x)}^2+10\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 32, normalized size = 1.28 \begin {gather*} e^{\frac {2 x^{3} + 15 x \log {\relax (x )}^{2} + 30 \log {\relax (x )}}{5 x \log {\relax (x )}^{2} + 10 \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________