Optimal. Leaf size=21 \[ 2-e^x+e^{-2 x} (-16+x)^2+x+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 33, normalized size of antiderivative = 1.57, number of steps used = 11, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6688, 2194, 2196, 2176} \begin {gather*} e^{-2 x} x^2-32 e^{-2 x} x+x+256 e^{-2 x}-e^x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-e^x+\frac {1}{x}-2 e^{-2 x} \left (272-33 x+x^2\right )\right ) \, dx\\ &=x+\log (x)-2 \int e^{-2 x} \left (272-33 x+x^2\right ) \, dx-\int e^x \, dx\\ &=-e^x+x+\log (x)-2 \int \left (272 e^{-2 x}-33 e^{-2 x} x+e^{-2 x} x^2\right ) \, dx\\ &=-e^x+x+\log (x)-2 \int e^{-2 x} x^2 \, dx+66 \int e^{-2 x} x \, dx-544 \int e^{-2 x} \, dx\\ &=272 e^{-2 x}-e^x+x-33 e^{-2 x} x+e^{-2 x} x^2+\log (x)-2 \int e^{-2 x} x \, dx+33 \int e^{-2 x} \, dx\\ &=\frac {511 e^{-2 x}}{2}-e^x+x-32 e^{-2 x} x+e^{-2 x} x^2+\log (x)-\int e^{-2 x} \, dx\\ &=256 e^{-2 x}-e^x+x-32 e^{-2 x} x+e^{-2 x} x^2+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 28, normalized size = 1.33 \begin {gather*} -e^x+x-2 e^{-2 x} \left (-128+16 x-\frac {x^2}{2}\right )+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 32, normalized size = 1.52 \begin {gather*} {\left (x^{2} + x e^{\left (2 \, x\right )} + e^{\left (2 \, x\right )} \log \relax (x) - 32 \, x - e^{\left (3 \, x\right )} + 256\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 29, normalized size = 1.38 \begin {gather*} x^{2} e^{\left (-2 \, x\right )} - 32 \, x e^{\left (-2 \, x\right )} + x + 256 \, e^{\left (-2 \, x\right )} - e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 1.05
method | result | size |
risch | \(x +\ln \relax (x )-{\mathrm e}^{x}+\left (x^{2}-32 x +256\right ) {\mathrm e}^{-2 x}\) | \(22\) |
norman | \(\left (256+x^{2}+x \,{\mathrm e}^{2 x}-32 x -{\mathrm e}^{3 x}\right ) {\mathrm e}^{-2 x}+\ln \relax (x )\) | \(29\) |
default | \(x +\ln \relax (x )+256 \,{\mathrm e}^{-2 x}-32 x \,{\mathrm e}^{-2 x}+x^{2} {\mathrm e}^{-2 x}-{\mathrm e}^{x}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 41, normalized size = 1.95 \begin {gather*} \frac {1}{2} \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x\right )} - \frac {33}{2} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} + x + 272 \, e^{\left (-2 \, x\right )} - e^{x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 21, normalized size = 1.00 \begin {gather*} x-{\mathrm {e}}^x+\ln \relax (x)+{\mathrm {e}}^{-2\,x}\,\left (x^2-32\,x+256\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.95 \begin {gather*} x + \left (x^{2} - 32 x + 256\right ) e^{- 2 x} - e^{x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________