Optimal. Leaf size=22 \[ \log \left (x+x \left (-2+x^2\right ) \left (4+\log \left (\frac {e^2}{2+x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 30, normalized size of antiderivative = 1.36, number of steps used = 2, number of rules used = 2, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6741, 6685} \begin {gather*} \log \left (-x \left (-6 x^2+x^2 \left (-\log \left (\frac {1}{x+2}\right )\right )+2 \log \left (\frac {1}{x+2}\right )+11\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6685
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {14+5 x-24 x^2-11 x^3-\left (-4-2 x+6 x^2+3 x^3\right ) \log \left (\frac {e^2}{2+x}\right )}{x (2+x) \left (11-6 x^2+2 \log \left (\frac {1}{2+x}\right )-x^2 \log \left (\frac {1}{2+x}\right )\right )} \, dx\\ &=\log \left (-x \left (11-6 x^2+2 \log \left (\frac {1}{2+x}\right )-x^2 \log \left (\frac {1}{2+x}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 30, normalized size = 1.36 \begin {gather*} \log (x)+\log \left (11-6 x^2+2 \log \left (\frac {1}{2+x}\right )-x^2 \log \left (\frac {1}{2+x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 40, normalized size = 1.82 \begin {gather*} \log \left (x^{3} - 2 \, x\right ) + \log \left (\frac {4 \, x^{2} + {\left (x^{2} - 2\right )} \log \left (\frac {e^{2}}{x + 2}\right ) - 7}{x^{2} - 2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 36, normalized size = 1.64
method | result | size |
norman | \(\ln \relax (x )+\ln \left (\ln \left (\frac {{\mathrm e}^{2}}{2+x}\right ) x^{2}+4 x^{2}-2 \ln \left (\frac {{\mathrm e}^{2}}{2+x}\right )-7\right )\) | \(36\) |
risch | \(\ln \left (x^{3}-2 x \right )+\ln \left (\ln \left (\frac {{\mathrm e}^{2}}{2+x}\right )+\frac {4 x^{2}-7}{x^{2}-2}\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 37, normalized size = 1.68 \begin {gather*} \log \left (x^{2} - 2\right ) + \log \relax (x) + \log \left (-\frac {6 \, x^{2} - {\left (x^{2} - 2\right )} \log \left (x + 2\right ) - 11}{x^{2} - 2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.66, size = 44, normalized size = 2.00 \begin {gather*} \ln \left (x^3-2\,x\right )+\ln \left (\frac {2\,\ln \left (\frac {1}{x+2}\right )-6\,x^2-x^2\,\ln \left (\frac {1}{x+2}\right )+11}{x^2-2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 29, normalized size = 1.32 \begin {gather*} \log {\left (x^{3} - 2 x \right )} + \log {\left (\log {\left (\frac {e^{2}}{x + 2} \right )} + \frac {4 x^{2} - 7}{x^{2} - 2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________