Optimal. Leaf size=30 \[ e^{e^{e^{-3+\frac {5}{x}-2 x+\frac {-\frac {e^5}{x}+x}{e^5}}}} \]
________________________________________________________________________________________
Rubi [F] time = 5.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-5+e^{e^{\frac {x^2+e^5 \left (4-3 x-2 x^2\right )}{e^5 x}}}+e^{\frac {x^2+e^5 \left (4-3 x-2 x^2\right )}{e^5 x}}+\frac {x^2+e^5 \left (4-3 x-2 x^2\right )}{e^5 x}\right ) \left (x^2+e^5 \left (-4-2 x^2\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-8+e^{e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}}+e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}+\frac {4}{x}-2 \left (1-\frac {1}{2 e^5}\right ) x\right ) \left (-4 e^5+\left (1-2 e^5\right ) x^2\right )}{x^2} \, dx\\ &=\int \left (\exp \left (-8+e^{e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}}+e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}+\frac {4}{x}-2 \left (1-\frac {1}{2 e^5}\right ) x\right ) \left (1-2 e^5\right )-\frac {4 \exp \left (-3+e^{e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}}+e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}+\frac {4}{x}-2 \left (1-\frac {1}{2 e^5}\right ) x\right )}{x^2}\right ) \, dx\\ &=-\left (4 \int \frac {\exp \left (-3+e^{e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}}+e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}+\frac {4}{x}-2 \left (1-\frac {1}{2 e^5}\right ) x\right )}{x^2} \, dx\right )+\left (1-2 e^5\right ) \int \exp \left (-8+e^{e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}}+e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}+\frac {4}{x}-2 \left (1-\frac {1}{2 e^5}\right ) x\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.73, size = 20, normalized size = 0.67 \begin {gather*} e^{e^{e^{-3+\frac {4}{x}+\left (-2+\frac {1}{e^5}\right ) x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 136, normalized size = 4.53 \begin {gather*} e^{\left (-\frac {{\left (x^{2} - {\left (2 \, x^{2} + 3 \, x - 4\right )} e^{5}\right )} e^{\left (-5\right )}}{x} + \frac {{\left (x^{2} - 2 \, {\left (x^{2} + 4 \, x - 2\right )} e^{5} + x e^{\left (\frac {{\left (x^{2} - {\left (2 \, x^{2} + 3 \, x - 4\right )} e^{5}\right )} e^{\left (-5\right )}}{x} + 5\right )} + x e^{\left (e^{\left (\frac {{\left (x^{2} - {\left (2 \, x^{2} + 3 \, x - 4\right )} e^{5}\right )} e^{\left (-5\right )}}{x}\right )} + 5\right )}\right )} e^{\left (-5\right )}}{x} - e^{\left (\frac {{\left (x^{2} - {\left (2 \, x^{2} + 3 \, x - 4\right )} e^{5}\right )} e^{\left (-5\right )}}{x}\right )} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} - 2 \, {\left (x^{2} + 2\right )} e^{5}\right )} e^{\left (\frac {{\left (x^{2} - {\left (2 \, x^{2} + 3 \, x - 4\right )} e^{5}\right )} e^{\left (-5\right )}}{x} + e^{\left (\frac {{\left (x^{2} - {\left (2 \, x^{2} + 3 \, x - 4\right )} e^{5}\right )} e^{\left (-5\right )}}{x}\right )} + e^{\left (e^{\left (\frac {{\left (x^{2} - {\left (2 \, x^{2} + 3 \, x - 4\right )} e^{5}\right )} e^{\left (-5\right )}}{x}\right )}\right )} - 5\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 29, normalized size = 0.97
method | result | size |
norman | \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{\frac {\left (\left (-2 x^{2}-3 x +4\right ) {\mathrm e}^{5}+x^{2}\right ) {\mathrm e}^{-5}}{x}}}}\) | \(29\) |
risch | \({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{-\frac {\left (2 x^{2} {\mathrm e}^{5}+3 x \,{\mathrm e}^{5}-x^{2}-4 \,{\mathrm e}^{5}\right ) {\mathrm e}^{-5}}{x}}}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.77, size = 17, normalized size = 0.57 \begin {gather*} e^{\left (e^{\left (e^{\left (x e^{\left (-5\right )} - 2 \, x + \frac {4}{x} - 3\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.11, size = 20, normalized size = 0.67 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{4/x}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-5}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 26, normalized size = 0.87 \begin {gather*} e^{e^{e^{\frac {x^{2} + \left (- 2 x^{2} - 3 x + 4\right ) e^{5}}{x e^{5}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________