Optimal. Leaf size=25 \[ x+\frac {16 e^{-1250+2 x} x^2}{\left (x-x^2 \log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1-64 e^{-1250+2 x}+\left (3 x+e^{-1250+2 x} (-32+32 x)\right ) \log (x)-3 x^2 \log ^2(x)+x^3 \log ^3(x)}{-1+3 x \log (x)-3 x^2 \log ^2(x)+x^3 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+64 e^{-1250+2 x}-\left (3 x+e^{-1250+2 x} (-32+32 x)\right ) \log (x)+3 x^2 \log ^2(x)-x^3 \log ^3(x)}{(1-x \log (x))^3} \, dx\\ &=\int \left (-\frac {1}{(-1+x \log (x))^3}+\frac {3 x \log (x)}{(-1+x \log (x))^3}-\frac {3 x^2 \log ^2(x)}{(-1+x \log (x))^3}+\frac {x^3 \log ^3(x)}{(-1+x \log (x))^3}+\frac {32 e^{-1250+2 x} (-2-\log (x)+x \log (x))}{(-1+x \log (x))^3}\right ) \, dx\\ &=3 \int \frac {x \log (x)}{(-1+x \log (x))^3} \, dx-3 \int \frac {x^2 \log ^2(x)}{(-1+x \log (x))^3} \, dx+32 \int \frac {e^{-1250+2 x} (-2-\log (x)+x \log (x))}{(-1+x \log (x))^3} \, dx-\int \frac {1}{(-1+x \log (x))^3} \, dx+\int \frac {x^3 \log ^3(x)}{(-1+x \log (x))^3} \, dx\\ &=3 \int \left (\frac {1}{(-1+x \log (x))^3}+\frac {1}{(-1+x \log (x))^2}\right ) \, dx-3 \int \left (\frac {1}{(-1+x \log (x))^3}+\frac {2}{(-1+x \log (x))^2}+\frac {1}{-1+x \log (x)}\right ) \, dx+32 \int \left (\frac {e^{-1250+2 x} (-1-x)}{x (-1+x \log (x))^3}+\frac {e^{-1250+2 x} (-1+x)}{x (-1+x \log (x))^2}\right ) \, dx-\int \frac {1}{(-1+x \log (x))^3} \, dx+\int \left (1+\frac {1}{(-1+x \log (x))^3}+\frac {3}{(-1+x \log (x))^2}+\frac {3}{-1+x \log (x)}\right ) \, dx\\ &=x+2 \left (3 \int \frac {1}{(-1+x \log (x))^2} \, dx\right )-6 \int \frac {1}{(-1+x \log (x))^2} \, dx+32 \int \frac {e^{-1250+2 x} (-1-x)}{x (-1+x \log (x))^3} \, dx+32 \int \frac {e^{-1250+2 x} (-1+x)}{x (-1+x \log (x))^2} \, dx\\ &=x+2 \left (3 \int \frac {1}{(-1+x \log (x))^2} \, dx\right )-6 \int \frac {1}{(-1+x \log (x))^2} \, dx+32 \int \left (-\frac {e^{-1250+2 x}}{(-1+x \log (x))^3}-\frac {e^{-1250+2 x}}{x (-1+x \log (x))^3}\right ) \, dx+32 \int \left (\frac {e^{-1250+2 x}}{(-1+x \log (x))^2}-\frac {e^{-1250+2 x}}{x (-1+x \log (x))^2}\right ) \, dx\\ &=x+2 \left (3 \int \frac {1}{(-1+x \log (x))^2} \, dx\right )-6 \int \frac {1}{(-1+x \log (x))^2} \, dx-32 \int \frac {e^{-1250+2 x}}{(-1+x \log (x))^3} \, dx-32 \int \frac {e^{-1250+2 x}}{x (-1+x \log (x))^3} \, dx+32 \int \frac {e^{-1250+2 x}}{(-1+x \log (x))^2} \, dx-32 \int \frac {e^{-1250+2 x}}{x (-1+x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 25, normalized size = 1.00 \begin {gather*} \frac {e^{1250} x+\frac {16 e^{2 x}}{(-1+x \log (x))^2}}{e^{1250}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 43, normalized size = 1.72 \begin {gather*} \frac {x^{3} \log \relax (x)^{2} - 2 \, x^{2} \log \relax (x) + x + 16 \, e^{\left (2 \, x - 1250\right )}}{x^{2} \log \relax (x)^{2} - 2 \, x \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.99, size = 53, normalized size = 2.12 \begin {gather*} \frac {x^{3} e^{1250} \log \relax (x)^{2} - 2 \, x^{2} e^{1250} \log \relax (x) + x e^{1250} + 16 \, e^{\left (2 \, x\right )}}{x^{2} e^{1250} \log \relax (x)^{2} - 2 \, x e^{1250} \log \relax (x) + e^{1250}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 0.76
method | result | size |
risch | \(x +\frac {16 \,{\mathrm e}^{2 x -1250}}{\left (x \ln \relax (x )-1\right )^{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 53, normalized size = 2.12 \begin {gather*} \frac {x^{3} e^{1250} \log \relax (x)^{2} - 2 \, x^{2} e^{1250} \log \relax (x) + x e^{1250} + 16 \, e^{\left (2 \, x\right )}}{x^{2} e^{1250} \log \relax (x)^{2} - 2 \, x e^{1250} \log \relax (x) + e^{1250}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.31, size = 34, normalized size = 1.36 \begin {gather*} \frac {x+16\,{\mathrm {e}}^{2\,x-1250}-2\,x^2\,\ln \relax (x)+x^3\,{\ln \relax (x)}^2}{{\left (x\,\ln \relax (x)-1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 26, normalized size = 1.04 \begin {gather*} x + \frac {16 e^{2 x - 1250}}{x^{2} \log {\relax (x )}^{2} - 2 x \log {\relax (x )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________