Optimal. Leaf size=19 \[ 3+\frac {1}{12} x \left (x+\log \left ((e-4 (-16+x))^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 41, normalized size of antiderivative = 2.16, number of steps used = 8, number of rules used = 6, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {6, 6688, 12, 77, 2389, 2295} \begin {gather*} \frac {x^2}{12}+\frac {1}{24} (64+e) \log (-4 x+e+64)-\frac {1}{48} (-4 x+e+64) \log \left ((-4 x+e+64)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 77
Rule 2295
Rule 2389
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(120+2 e) x-8 x^2+(64+e-4 x) \log \left (4096+e^2+e (128-8 x)-512 x+16 x^2\right )}{768+12 e-48 x} \, dx\\ &=\int \frac {1}{12} \left (\frac {2 (60+e-4 x) x}{64+e-4 x}+\log \left ((64+e-4 x)^2\right )\right ) \, dx\\ &=\frac {1}{12} \int \left (\frac {2 (60+e-4 x) x}{64+e-4 x}+\log \left ((64+e-4 x)^2\right )\right ) \, dx\\ &=\frac {1}{12} \int \log \left ((64+e-4 x)^2\right ) \, dx+\frac {1}{6} \int \frac {(60+e-4 x) x}{64+e-4 x} \, dx\\ &=-\left (\frac {1}{48} \operatorname {Subst}\left (\int \log \left (x^2\right ) \, dx,x,64+e-4 x\right )\right )+\frac {1}{6} \int \left (1+\frac {-64-e}{64+e-4 x}+x\right ) \, dx\\ &=\frac {x^2}{12}+\frac {1}{24} (64+e) \log (64+e-4 x)-\frac {1}{48} (64+e-4 x) \log \left ((64+e-4 x)^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 66, normalized size = 3.47 \begin {gather*} \frac {1}{12} \left (-\frac {1}{8} (68+e) (64+e-4 x)+\frac {1}{16} (64+e-4 x)^2-2 x+\frac {1}{2} (64+e) \log (64+e-4 x)-\frac {1}{4} (64+e-4 x) \log \left ((64+e-4 x)^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 29, normalized size = 1.53 \begin {gather*} \frac {1}{12} \, x^{2} + \frac {1}{12} \, x \log \left (16 \, x^{2} - 8 \, {\left (x - 16\right )} e - 512 \, x + e^{2} + 4096\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 31, normalized size = 1.63 \begin {gather*} \frac {1}{12} \, x^{2} + \frac {1}{12} \, x \log \left (16 \, x^{2} - 8 \, x e - 512 \, x + e^{2} + 128 \, e + 4096\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 31, normalized size = 1.63
method | result | size |
risch | \(\frac {x^{2}}{12}+\frac {x \ln \left ({\mathrm e}^{2}+\left (-8 x +128\right ) {\mathrm e}+16 x^{2}-512 x +4096\right )}{12}\) | \(31\) |
norman | \(\frac {x^{2}}{12}+\frac {x \ln \left ({\mathrm e}^{2}+\left (-8 x +128\right ) {\mathrm e}+16 x^{2}-512 x +4096\right )}{12}\) | \(33\) |
default | \(\frac {x^{2}}{12}+\frac {\ln \left ({\mathrm e}^{2}-8 x \,{\mathrm e}+16 x^{2}+128 \,{\mathrm e}-512 x +4096\right ) x}{12}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 238, normalized size = 12.53 \begin {gather*} -\frac {1}{48} \, e \log \left (16 \, x^{2} - 8 \, x e - 512 \, x + e^{2} + 128 \, e + 4096\right ) \log \left (4 \, x - e - 64\right ) - \frac {1}{48} \, {\left (e + 64\right )} \log \left (4 \, x - e - 64\right )^{2} + \frac {1}{12} \, x^{2} + \frac {1}{24} \, x {\left (e + 64\right )} - \frac {1}{96} \, {\left ({\left (e + 64\right )} \log \left (4 \, x - e - 64\right ) + 4 \, x\right )} e + \frac {1}{48} \, {\left (\log \left (16 \, x^{2} - 8 \, x e - 512 \, x + e^{2} + 128 \, e + 4096\right ) \log \left (4 \, x - e - 64\right ) - \log \left (4 \, x - e - 64\right )^{2}\right )} e + \frac {1}{48} \, {\left ({\left (e + 64\right )} \log \left (4 \, x - e - 64\right ) + 4 \, x\right )} \log \left (16 \, x^{2} - 8 \, x e - 512 \, x + e^{2} + 128 \, e + 4096\right ) + \frac {1}{96} \, {\left (e^{2} + 128 \, e + 4096\right )} \log \left (4 \, x - e - 64\right ) - \frac {2}{3} \, {\left (e + 64\right )} \log \left (4 \, x - e - 64\right ) - \frac {4}{3} \, \log \left (4 \, x - e - 64\right )^{2} - \frac {8}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.68, size = 27, normalized size = 1.42 \begin {gather*} \frac {x\,\left (x+\ln \left (128\,\mathrm {e}-512\,x+{\mathrm {e}}^2-8\,x\,\mathrm {e}+16\,x^2+4096\right )\right )}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 31, normalized size = 1.63 \begin {gather*} \frac {x^{2}}{12} + \frac {x \log {\left (16 x^{2} - 512 x + e \left (128 - 8 x\right ) + e^{2} + 4096 \right )}}{12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________