Optimal. Leaf size=22 \[ 5+x+e^{4 (1-6 x)+\frac {x^2}{13122}} x \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 33, normalized size of antiderivative = 1.50, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {12, 2288} \begin {gather*} \frac {e^{\frac {x^2}{13122}-24 x+4} \left (157464 x-x^2\right )}{157464-x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (6561+e^{4-24 x+\frac {x^2}{13122}} \left (6561-157464 x+x^2\right )\right ) \, dx}{6561}\\ &=x+\frac {\int e^{4-24 x+\frac {x^2}{13122}} \left (6561-157464 x+x^2\right ) \, dx}{6561}\\ &=x+\frac {e^{4-24 x+\frac {x^2}{13122}} \left (157464 x-x^2\right )}{157464-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 0.82 \begin {gather*} \left (1+e^{4-24 x+\frac {x^2}{13122}}\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 15, normalized size = 0.68 \begin {gather*} x e^{\left (\frac {1}{13122} \, x^{2} - 24 \, x + 4\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 15, normalized size = 0.68 \begin {gather*} x e^{\left (\frac {1}{13122} \, x^{2} - 24 \, x + 4\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.73
method | result | size |
default | \(x +x \,{\mathrm e}^{-24 x +4+\frac {1}{13122} x^{2}}\) | \(16\) |
risch | \(x +x \,{\mathrm e}^{-24 x +4+\frac {1}{13122} x^{2}}\) | \(16\) |
norman | \(x +{\mathrm e}^{\frac {x^{2}}{13122}} {\mathrm e}^{-24 x +4} x\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 158, normalized size = 7.18 \begin {gather*} -\frac {81}{2} i \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{162} i \, \sqrt {2} x - 972 i \, \sqrt {2}\right ) e^{\left (-1889564\right )} - 81 \, \sqrt {2} {\left (\frac {{\left (x - 157464\right )}^{3} \Gamma \left (\frac {3}{2}, -\frac {1}{13122} \, {\left (x - 157464\right )}^{2}\right )}{\left (-{\left (x - 157464\right )}^{2}\right )^{\frac {3}{2}}} - \frac {1889568 \, \sqrt {\pi } {\left (x - 157464\right )} {\left (\operatorname {erf}\left (\frac {1}{81} \, \sqrt {\frac {1}{2}} \sqrt {-{\left (x - 157464\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (x - 157464\right )}^{2}}} - 1944 \, \sqrt {2} e^{\left (\frac {1}{13122} \, {\left (x - 157464\right )}^{2}\right )}\right )} e^{\left (-1889564\right )} - 78732 \, \sqrt {2} {\left (\frac {1944 \, \sqrt {\pi } {\left (x - 157464\right )} {\left (\operatorname {erf}\left (\frac {1}{81} \, \sqrt {\frac {1}{2}} \sqrt {-{\left (x - 157464\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (x - 157464\right )}^{2}}} + \sqrt {2} e^{\left (\frac {1}{13122} \, {\left (x - 157464\right )}^{2}\right )}\right )} e^{\left (-1889564\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 15, normalized size = 0.68 \begin {gather*} x\,\left ({\mathrm {e}}^{\frac {x^2}{13122}-24\,x+4}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 0.68 \begin {gather*} x e^{\frac {x^{2}}{13122}} e^{4 - 24 x} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________