Optimal. Leaf size=31 \[ (3-x) \left (-x+e^{2+x-\frac {4 x^2}{\left (3+x^2\right )^2}} x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 68.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {-18-9 x-8 x^2-6 x^3-2 x^4-x^5}{9+6 x^2+x^4}\right ) \left (162 x+63 x^3+24 x^4+51 x^5-8 x^6-3 x^7-x^9+\exp \left (\frac {-18-9 x-8 x^2-6 x^3-2 x^4-x^5}{9+6 x^2+x^4}\right ) \left (-81+54 x-81 x^2+54 x^3-27 x^4+18 x^5-3 x^6+2 x^7\right )\right )}{27+27 x^2+9 x^4+x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) \left (162 x+63 x^3+24 x^4+51 x^5-8 x^6-3 x^7-x^9+\exp \left (-\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) (-3+2 x) \left (3+x^2\right )^3\right )}{\left (3+x^2\right )^3} \, dx\\ &=\int \left (-3+2 x+\frac {162 \exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x}{\left (3+x^2\right )^3}+\frac {63 \exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^3}{\left (3+x^2\right )^3}+\frac {24 \exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^4}{\left (3+x^2\right )^3}+\frac {51 \exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^5}{\left (3+x^2\right )^3}-\frac {8 \exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^6}{\left (3+x^2\right )^3}-\frac {3 \exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^7}{\left (3+x^2\right )^3}-\frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^9}{\left (3+x^2\right )^3}\right ) \, dx\\ &=-3 x+x^2-3 \int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^7}{\left (3+x^2\right )^3} \, dx-8 \int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^6}{\left (3+x^2\right )^3} \, dx+24 \int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^4}{\left (3+x^2\right )^3} \, dx+51 \int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^5}{\left (3+x^2\right )^3} \, dx+63 \int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^3}{\left (3+x^2\right )^3} \, dx+162 \int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x}{\left (3+x^2\right )^3} \, dx-\int \frac {\exp \left (\frac {18+9 x+8 x^2+6 x^3+2 x^4+x^5}{\left (3+x^2\right )^2}\right ) x^9}{\left (3+x^2\right )^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 47, normalized size = 1.52 \begin {gather*} -3 x+x^2+e^{x+\frac {12}{\left (3+x^2\right )^2}-\frac {4}{3+x^2}} \left (3 e^2 x^2-e^2 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 55, normalized size = 1.77 \begin {gather*} x^{2} - {\left (x^{3} - 3 \, x^{2}\right )} e^{\left (\frac {x^{5} + 2 \, x^{4} + 6 \, x^{3} + 8 \, x^{2} + 9 \, x + 18}{x^{4} + 6 \, x^{2} + 9}\right )} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.04, size = 83, normalized size = 2.68 \begin {gather*} -x^{3} e^{\left (\frac {x^{5} + 6 \, x^{3} - 4 \, x^{2} + 9 \, x}{x^{4} + 6 \, x^{2} + 9} + 2\right )} + 3 \, x^{2} e^{\left (\frac {x^{5} + 6 \, x^{3} - 4 \, x^{2} + 9 \, x}{x^{4} + 6 \, x^{2} + 9} + 2\right )} + x^{2} - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 52, normalized size = 1.68
method | result | size |
risch | \(x^{2}-3 x +\left (-x^{3}+3 x^{2}\right ) {\mathrm e}^{\frac {x^{5}+2 x^{4}+6 x^{3}+8 x^{2}+9 x +18}{\left (x^{2}+3\right )^{2}}}\) | \(52\) |
norman | \(\frac {\left (x^{6} {\mathrm e}^{\frac {-x^{5}-2 x^{4}-6 x^{3}-8 x^{2}-9 x -18}{x^{4}+6 x^{2}+9}}-54 \,{\mathrm e}^{\frac {-x^{5}-2 x^{4}-6 x^{3}-8 x^{2}-9 x -18}{x^{4}+6 x^{2}+9}}-27 x^{2} {\mathrm e}^{\frac {-x^{5}-2 x^{4}-6 x^{3}-8 x^{2}-9 x -18}{x^{4}+6 x^{2}+9}}+27 x^{2}-9 x^{3}+18 x^{4}-6 x^{5}+3 x^{6}-x^{7}-27 x \,{\mathrm e}^{\frac {-x^{5}-2 x^{4}-6 x^{3}-8 x^{2}-9 x -18}{x^{4}+6 x^{2}+9}}-18 x^{3} {\mathrm e}^{\frac {-x^{5}-2 x^{4}-6 x^{3}-8 x^{2}-9 x -18}{x^{4}+6 x^{2}+9}}-3 x^{5} {\mathrm e}^{\frac {-x^{5}-2 x^{4}-6 x^{3}-8 x^{2}-9 x -18}{x^{4}+6 x^{2}+9}}\right ) {\mathrm e}^{-\frac {-x^{5}-2 x^{4}-6 x^{3}-8 x^{2}-9 x -18}{x^{4}+6 x^{2}+9}}}{\left (x^{2}+3\right )^{2}}\) | \(339\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 214, normalized size = 6.90 \begin {gather*} x^{2} - {\left (x^{3} e^{2} - 3 \, x^{2} e^{2}\right )} e^{\left (x + \frac {12}{x^{4} + 6 \, x^{2} + 9} - \frac {4}{x^{2} + 3}\right )} - 3 \, x + \frac {27 \, {\left (5 \, x^{3} + 9 \, x\right )}}{8 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} - \frac {27 \, {\left (3 \, x^{3} + 7 \, x\right )}}{8 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} - \frac {27 \, {\left (x^{3} + 5 \, x\right )}}{8 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} - \frac {27 \, {\left (x^{3} - 3 \, x\right )}}{8 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} + \frac {27 \, {\left (4 \, x^{2} + 9\right )}}{2 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} - \frac {27 \, {\left (2 \, x^{2} + 5\right )}}{2 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} - \frac {27 \, {\left (2 \, x^{2} + 3\right )}}{2 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} - \frac {27}{2 \, {\left (x^{4} + 6 \, x^{2} + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 221, normalized size = 7.13 \begin {gather*} x^2-3\,x+3\,x^2\,{\mathrm {e}}^{\frac {9\,x}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {x^5}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {2\,x^4}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {6\,x^3}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {8\,x^2}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {18}{x^4+6\,x^2+9}}-x^3\,{\mathrm {e}}^{\frac {9\,x}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {x^5}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {2\,x^4}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {6\,x^3}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {8\,x^2}{x^4+6\,x^2+9}}\,{\mathrm {e}}^{\frac {18}{x^4+6\,x^2+9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 51, normalized size = 1.65 \begin {gather*} x^{2} - 3 x + \left (- x^{3} + 3 x^{2}\right ) e^{- \frac {- x^{5} - 2 x^{4} - 6 x^{3} - 8 x^{2} - 9 x - 18}{x^{4} + 6 x^{2} + 9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________