Optimal. Leaf size=30 \[ x+\frac {\left (e^{e^3-x}+x\right )^2}{e^5+\log \left (3-x^2\right )} \]
________________________________________________________________________________________
Rubi [B] time = 5.36, antiderivative size = 186, normalized size of antiderivative = 6.20, number of steps used = 45, number of rules used = 18, integrand size = 227, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6741, 6725, 2454, 2389, 2297, 2299, 2178, 2475, 2411, 2353, 2302, 30, 6742, 2390, 6692, 43, 29, 2288} \begin {gather*} \frac {e^{2 e^3-2 x} \left (-e^5 x^2+x^2 \left (-\log \left (3-x^2\right )\right )+3 \log \left (3-x^2\right )+3 e^5\right )}{\left (3-x^2\right ) \left (\log \left (3-x^2\right )+e^5\right )^2}-\frac {3-x^2}{\log \left (3-x^2\right )+e^5}+\frac {3}{\log \left (3-x^2\right )+e^5}+\frac {2 e^{e^3-x} \left (-e^5 x^3+3 x \log \left (3-x^2\right )+x^3 \left (-\log \left (3-x^2\right )\right )+3 e^5 x\right )}{\left (3-x^2\right ) \left (\log \left (3-x^2\right )+e^5\right )^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 30
Rule 43
Rule 2178
Rule 2288
Rule 2297
Rule 2299
Rule 2302
Rule 2353
Rule 2389
Rule 2390
Rule 2411
Rule 2454
Rule 2475
Rule 6692
Rule 6725
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^3-e^{10} \left (-3+x^2\right )-e^5 \left (-6 x+2 x^3\right )-e^{2 e^3-2 x} \left (-2 x+e^5 \left (6-2 x^2\right )\right )-e^{e^3-x} \left (-4 x^2+e^5 \left (-6+6 x+2 x^2-2 x^3\right )\right )-\left (-6 x+2 x^3+e^{2 e^3-2 x} \left (6-2 x^2\right )+e^5 \left (-6+2 x^2\right )+e^{e^3-x} \left (-6+6 x+2 x^2-2 x^3\right )\right ) \log \left (3-x^2\right )-\left (-3+x^2\right ) \log ^2\left (3-x^2\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\\ &=\int \left (\frac {e^{10}}{\left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^5 x}{\left (e^5+\log \left (3-x^2\right )\right )^2}-\frac {2 x^3}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^5 \log \left (3-x^2\right )}{\left (e^5+\log \left (3-x^2\right )\right )^2}-\frac {6 x \log \left (3-x^2\right )}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 x^3 \log \left (3-x^2\right )}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {\log ^2\left (3-x^2\right )}{\left (e^5+\log \left (3-x^2\right )\right )^2}-\frac {2 e^{2 e^3-2 x} \left (-3 e^5+x+e^5 x^2-3 \log \left (3-x^2\right )+x^2 \log \left (3-x^2\right )\right )}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5-3 e^5 x+2 \left (1-\frac {e^5}{2}\right ) x^2+e^5 x^3+3 \log \left (3-x^2\right )-3 x \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )+x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^3}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )+2 \int \frac {x^3 \log \left (3-x^2\right )}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2} \, dx-2 \int \frac {e^{2 e^3-2 x} \left (-3 e^5+x+e^5 x^2-3 \log \left (3-x^2\right )+x^2 \log \left (3-x^2\right )\right )}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+2 \int \frac {e^{e^3-x} \left (3 e^5-3 e^5 x+2 \left (1-\frac {e^5}{2}\right ) x^2+e^5 x^3+3 \log \left (3-x^2\right )-3 x \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )+x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2} \, dx-6 \int \frac {x \log \left (3-x^2\right )}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\left (2 e^5\right ) \int \frac {x}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\left (2 e^5\right ) \int \frac {\log \left (3-x^2\right )}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\int \frac {\log ^2\left (3-x^2\right )}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\\ &=\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+2 \int \left (-\frac {e^5 x^3}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {x^3}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )}\right ) \, dx-3 \operatorname {Subst}\left (\int \frac {x}{\left (e^5+x\right )^2} \, dx,x,\log \left (3-x^2\right )\right )+e^5 \operatorname {Subst}\left (\int \frac {1}{\left (e^5+\log (3-x)\right )^2} \, dx,x,x^2\right )+\left (2 e^5\right ) \int \left (-\frac {e^5}{\left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {1}{e^5+\log \left (3-x^2\right )}\right ) \, dx+e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\int \left (1+\frac {e^{10}}{\left (e^5+\log \left (3-x^2\right )\right )^2}-\frac {2 e^5}{e^5+\log \left (3-x^2\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {x}{(-3+x) \left (e^5+\log (3-x)\right )^2} \, dx,x,x^2\right )\\ &=x+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+2 \int \frac {x^3}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )} \, dx-3 \operatorname {Subst}\left (\int \left (-\frac {e^5}{\left (e^5+x\right )^2}+\frac {1}{e^5+x}\right ) \, dx,x,\log \left (3-x^2\right )\right )-e^5 \operatorname {Subst}\left (\int \frac {1}{\left (e^5+\log (x)\right )^2} \, dx,x,3-x^2\right )-\left (2 e^5\right ) \int \frac {x^3}{\left (-3+x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx-\operatorname {Subst}\left (\int \frac {3-x}{x \left (e^5+\log (x)\right )^2} \, dx,x,3-x^2\right )\\ &=x-\frac {3 e^5}{e^5+\log \left (3-x^2\right )}+\frac {e^5 \left (3-x^2\right )}{e^5+\log \left (3-x^2\right )}+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}-3 \log \left (e^5+\log \left (3-x^2\right )\right )-e^5 \operatorname {Subst}\left (\int \frac {x}{(-3+x) \left (e^5+\log (3-x)\right )^2} \, dx,x,x^2\right )-e^5 \operatorname {Subst}\left (\int \frac {1}{e^5+\log (x)} \, dx,x,3-x^2\right )+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\operatorname {Subst}\left (\int \frac {x}{(-3+x) \left (e^5+\log (3-x)\right )} \, dx,x,x^2\right )-\operatorname {Subst}\left (\int \left (-\frac {1}{\left (e^5+\log (x)\right )^2}+\frac {3}{x \left (e^5+\log (x)\right )^2}\right ) \, dx,x,3-x^2\right )\\ &=x-\frac {3 e^5}{e^5+\log \left (3-x^2\right )}+\frac {e^5 \left (3-x^2\right )}{e^5+\log \left (3-x^2\right )}+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}-3 \log \left (e^5+\log \left (3-x^2\right )\right )-3 \operatorname {Subst}\left (\int \frac {1}{x \left (e^5+\log (x)\right )^2} \, dx,x,3-x^2\right )-e^5 \operatorname {Subst}\left (\int \frac {e^x}{e^5+x} \, dx,x,\log \left (3-x^2\right )\right )-e^5 \operatorname {Subst}\left (\int \frac {3-x}{x \left (e^5+\log (x)\right )^2} \, dx,x,3-x^2\right )+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\operatorname {Subst}\left (\int \frac {1}{\left (e^5+\log (x)\right )^2} \, dx,x,3-x^2\right )+\operatorname {Subst}\left (\int \frac {3-x}{x \left (e^5+\log (x)\right )} \, dx,x,3-x^2\right )\\ &=x-e^{5-e^5} \text {Ei}\left (e^5+\log \left (3-x^2\right )\right )-\frac {3 e^5}{e^5+\log \left (3-x^2\right )}-\frac {3-x^2}{e^5+\log \left (3-x^2\right )}+\frac {e^5 \left (3-x^2\right )}{e^5+\log \left (3-x^2\right )}+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}-3 \log \left (e^5+\log \left (3-x^2\right )\right )-3 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,e^5+\log \left (3-x^2\right )\right )-e^5 \operatorname {Subst}\left (\int \left (-\frac {1}{\left (e^5+\log (x)\right )^2}+\frac {3}{x \left (e^5+\log (x)\right )^2}\right ) \, dx,x,3-x^2\right )+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\operatorname {Subst}\left (\int \frac {1}{e^5+\log (x)} \, dx,x,3-x^2\right )+\operatorname {Subst}\left (\int \left (-\frac {1}{e^5+\log (x)}+\frac {3}{x \left (e^5+\log (x)\right )}\right ) \, dx,x,3-x^2\right )\\ &=x-e^{5-e^5} \text {Ei}\left (e^5+\log \left (3-x^2\right )\right )+\frac {3}{e^5+\log \left (3-x^2\right )}-\frac {3 e^5}{e^5+\log \left (3-x^2\right )}-\frac {3-x^2}{e^5+\log \left (3-x^2\right )}+\frac {e^5 \left (3-x^2\right )}{e^5+\log \left (3-x^2\right )}+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}-3 \log \left (e^5+\log \left (3-x^2\right )\right )+3 \operatorname {Subst}\left (\int \frac {1}{x \left (e^5+\log (x)\right )} \, dx,x,3-x^2\right )+e^5 \operatorname {Subst}\left (\int \frac {1}{\left (e^5+\log (x)\right )^2} \, dx,x,3-x^2\right )-\left (3 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{x \left (e^5+\log (x)\right )^2} \, dx,x,3-x^2\right )+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx+\operatorname {Subst}\left (\int \frac {e^x}{e^5+x} \, dx,x,\log \left (3-x^2\right )\right )-\operatorname {Subst}\left (\int \frac {1}{e^5+\log (x)} \, dx,x,3-x^2\right )\\ &=x+e^{-e^5} \text {Ei}\left (e^5+\log \left (3-x^2\right )\right )-e^{5-e^5} \text {Ei}\left (e^5+\log \left (3-x^2\right )\right )+\frac {3}{e^5+\log \left (3-x^2\right )}-\frac {3 e^5}{e^5+\log \left (3-x^2\right )}-\frac {3-x^2}{e^5+\log \left (3-x^2\right )}+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}-3 \log \left (e^5+\log \left (3-x^2\right )\right )+3 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^5+\log \left (3-x^2\right )\right )+e^5 \operatorname {Subst}\left (\int \frac {1}{e^5+\log (x)} \, dx,x,3-x^2\right )-\left (3 e^5\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,e^5+\log \left (3-x^2\right )\right )+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx-\operatorname {Subst}\left (\int \frac {e^x}{e^5+x} \, dx,x,\log \left (3-x^2\right )\right )\\ &=x-e^{5-e^5} \text {Ei}\left (e^5+\log \left (3-x^2\right )\right )+\frac {3}{e^5+\log \left (3-x^2\right )}-\frac {3-x^2}{e^5+\log \left (3-x^2\right )}+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+e^5 \operatorname {Subst}\left (\int \frac {e^x}{e^5+x} \, dx,x,\log \left (3-x^2\right )\right )+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\\ &=x+\frac {3}{e^5+\log \left (3-x^2\right )}-\frac {3-x^2}{e^5+\log \left (3-x^2\right )}+\frac {e^{2 e^3-2 x} \left (3 e^5-e^5 x^2+3 \log \left (3-x^2\right )-x^2 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+\frac {2 e^{e^3-x} \left (3 e^5 x-e^5 x^3+3 x \log \left (3-x^2\right )-x^3 \log \left (3-x^2\right )\right )}{\left (3-x^2\right ) \left (e^5+\log \left (3-x^2\right )\right )^2}+2 \left (e^{10} \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\right )-\left (2 e^{10}\right ) \int \frac {1}{\left (e^5+\log \left (3-x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 35, normalized size = 1.17 \begin {gather*} x+\frac {e^{-2 x} \left (e^{e^3}+e^x x\right )^2}{e^5+\log \left (3-x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 51, normalized size = 1.70 \begin {gather*} \frac {x^{2} + x e^{5} + 2 \, x e^{\left (-x + e^{3}\right )} + x \log \left (-x^{2} + 3\right ) + e^{\left (-2 \, x + 2 \, e^{3}\right )}}{e^{5} + \log \left (-x^{2} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 82, normalized size = 2.73 \begin {gather*} \frac {x^{3} e^{\left (3 \, x\right )} + x^{2} e^{\left (3 \, x\right )} \log \left (-x^{2} + 3\right ) + x^{2} e^{\left (3 \, x + 5\right )} + 2 \, x^{2} e^{\left (2 \, x + e^{3}\right )} + x e^{\left (x + 2 \, e^{3}\right )}}{x e^{\left (3 \, x\right )} \log \left (-x^{2} + 3\right ) + x e^{\left (3 \, x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 40, normalized size = 1.33
method | result | size |
risch | \(x +\frac {x^{2}+2 x \,{\mathrm e}^{-x +{\mathrm e}^{3}}+{\mathrm e}^{-2 x +2 \,{\mathrm e}^{3}}}{{\mathrm e}^{5}+\ln \left (-x^{2}+3\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 64, normalized size = 2.13 \begin {gather*} \frac {x e^{\left (2 \, x\right )} \log \left (-x^{2} + 3\right ) + {\left (x^{2} + x e^{5}\right )} e^{\left (2 \, x\right )} + 2 \, x e^{\left (x + e^{3}\right )} + e^{\left (2 \, e^{3}\right )}}{e^{\left (2 \, x\right )} \log \left (-x^{2} + 3\right ) + e^{\left (2 \, x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.97, size = 95, normalized size = 3.17 \begin {gather*} x+\frac {3\,{\mathrm {e}}^5-\ln \left (3-x^2\right )\,\left (x^2-3\right )-x^2\,{\mathrm {e}}^5+x^2}{\ln \left (3-x^2\right )+{\mathrm {e}}^5}+x^2+\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^3-2\,x}}{\ln \left (3-x^2\right )+{\mathrm {e}}^5}+\frac {2\,x\,{\mathrm {e}}^{{\mathrm {e}}^3-x}}{\ln \left (3-x^2\right )+{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.53, size = 82, normalized size = 2.73 \begin {gather*} \frac {x^{2}}{\log {\left (3 - x^{2} \right )} + e^{5}} + x + \frac {\left (2 x \log {\left (3 - x^{2} \right )} + 2 x e^{5}\right ) e^{- x + e^{3}} + \left (\log {\left (3 - x^{2} \right )} + e^{5}\right ) e^{- 2 x + 2 e^{3}}}{\log {\left (3 - x^{2} \right )}^{2} + 2 e^{5} \log {\left (3 - x^{2} \right )} + e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________