Optimal. Leaf size=32 \[ 3 \left (-e^{\frac {x}{5 \log (2)}}+(5+x) \left (-\frac {1}{x}+x+x^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 52, normalized size of antiderivative = 1.62, number of steps used = 6, number of rules used = 4, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.066, Rules used = {12, 14, 2194, 6742} \begin {gather*} 3 x^5+21 x^4+33 x^3+9 x^2+\frac {15}{x^2}-36 x+\frac {3}{x}-\frac {3 \log (32) e^{\frac {x}{\log (32)}}}{5 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-3 e^{\frac {x}{5 \log (2)}} x^3+\left (-150-15 x-180 x^3+90 x^4+495 x^5+420 x^6+75 x^7\right ) \log (2)}{x^3} \, dx}{5 \log (2)}\\ &=\frac {\int \left (-3 e^{\frac {x}{\log (32)}}+\frac {15 \left (-1+x^2+x^3\right ) \left (10+x+10 x^2+23 x^3+5 x^4\right ) \log (2)}{x^3}\right ) \, dx}{5 \log (2)}\\ &=3 \int \frac {\left (-1+x^2+x^3\right ) \left (10+x+10 x^2+23 x^3+5 x^4\right )}{x^3} \, dx-\frac {3 \int e^{\frac {x}{\log (32)}} \, dx}{5 \log (2)}\\ &=-\frac {3 e^{\frac {x}{\log (32)}} \log (32)}{5 \log (2)}+3 \int \left (-12-\frac {10}{x^3}-\frac {1}{x^2}+6 x+33 x^2+28 x^3+5 x^4\right ) \, dx\\ &=\frac {15}{x^2}+\frac {3}{x}-36 x+9 x^2+33 x^3+21 x^4+3 x^5-\frac {3 e^{\frac {x}{\log (32)}} \log (32)}{5 \log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 44, normalized size = 1.38 \begin {gather*} -3 e^{\frac {x}{\log (32)}}+\frac {15}{x^2}+\frac {3}{x}-36 x+9 x^2+33 x^3+21 x^4+3 x^5 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 44, normalized size = 1.38 \begin {gather*} \frac {3 \, {\left (x^{7} + 7 \, x^{6} + 11 \, x^{5} + 3 \, x^{4} - 12 \, x^{3} - x^{2} e^{\left (\frac {x}{5 \, \log \relax (2)}\right )} + x + 5\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 67, normalized size = 2.09 \begin {gather*} \frac {3 \, {\left (x^{7} \log \relax (2) + 7 \, x^{6} \log \relax (2) + 11 \, x^{5} \log \relax (2) + 3 \, x^{4} \log \relax (2) - 12 \, x^{3} \log \relax (2) - x^{2} e^{\left (\frac {x}{5 \, \log \relax (2)}\right )} \log \relax (2) + x \log \relax (2) + 5 \, \log \relax (2)\right )}}{x^{2} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 48, normalized size = 1.50
method | result | size |
norman | \(\frac {15+3 x -36 x^{3}+9 x^{4}+33 x^{5}+21 x^{6}+3 x^{7}-3 x^{2} {\mathrm e}^{\frac {x}{5 \ln \relax (2)}}}{x^{2}}\) | \(48\) |
risch | \(3 x^{5}+21 x^{4}+33 x^{3}+9 x^{2}-36 x +\frac {15 x \ln \relax (2)+75 \ln \relax (2)}{5 \ln \relax (2) x^{2}}-3 \,{\mathrm e}^{\frac {x}{5 \ln \relax (2)}}\) | \(54\) |
derivativedivides | \(\frac {-4500 x \ln \relax (2)^{3}+\frac {1875 \ln \relax (2)^{3}}{x^{2}}+\frac {375 \ln \relax (2)^{3}}{x}+1125 x^{2} \ln \relax (2)^{3}+4125 x^{3} \ln \relax (2)^{3}+2625 x^{4} \ln \relax (2)^{3}+375 x^{5} \ln \relax (2)^{3}-375 \ln \relax (2)^{3} {\mathrm e}^{\frac {x}{5 \ln \relax (2)}}}{125 \ln \relax (2)^{3}}\) | \(83\) |
default | \(\frac {-4500 x \ln \relax (2)^{3}+\frac {1875 \ln \relax (2)^{3}}{x^{2}}+\frac {375 \ln \relax (2)^{3}}{x}+1125 x^{2} \ln \relax (2)^{3}+4125 x^{3} \ln \relax (2)^{3}+2625 x^{4} \ln \relax (2)^{3}+375 x^{5} \ln \relax (2)^{3}-375 \ln \relax (2)^{3} {\mathrm e}^{\frac {x}{5 \ln \relax (2)}}}{125 \ln \relax (2)^{3}}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 64, normalized size = 2.00 \begin {gather*} \frac {3 \, {\left (x^{5} \log \relax (2) + 7 \, x^{4} \log \relax (2) + 11 \, x^{3} \log \relax (2) + 3 \, x^{2} \log \relax (2) - 12 \, x \log \relax (2) - e^{\left (\frac {x}{5 \, \log \relax (2)}\right )} \log \relax (2) + \frac {\log \relax (2)}{x} + \frac {5 \, \log \relax (2)}{x^{2}}\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.32, size = 43, normalized size = 1.34 \begin {gather*} \frac {3\,x+15}{x^2}-3\,{\mathrm {e}}^{\frac {x}{5\,\ln \relax (2)}}-36\,x+9\,x^2+33\,x^3+21\,x^4+3\,x^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 41, normalized size = 1.28 \begin {gather*} 3 x^{5} + 21 x^{4} + 33 x^{3} + 9 x^{2} - 36 x - 3 e^{\frac {x}{5 \log {\relax (2 )}}} + \frac {3 x + 15}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________