Optimal. Leaf size=28 \[ 4+\frac {e^{e^{5 x/4}}}{4 x}+x+x \left (-x+x^5\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x^2-32 x^3+96 x^7+e^{e^{5 x/4}} \left (-4+5 e^{5 x/4} x\right )}{16 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \frac {16 x^2-32 x^3+96 x^7+e^{e^{5 x/4}} \left (-4+5 e^{5 x/4} x\right )}{x^2} \, dx\\ &=\frac {1}{16} \int \left (\frac {5 e^{e^{5 x/4}+\frac {5 x}{4}}}{x}+\frac {4 \left (-e^{e^{5 x/4}}+4 x^2-8 x^3+24 x^7\right )}{x^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-e^{e^{5 x/4}}+4 x^2-8 x^3+24 x^7}{x^2} \, dx+\frac {5}{16} \int \frac {e^{e^{5 x/4}+\frac {5 x}{4}}}{x} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^{e^{5 x/4}}}{x^2}+4 \left (1-2 x+6 x^5\right )\right ) \, dx+\frac {5}{16} \int \frac {e^{e^{5 x/4}+\frac {5 x}{4}}}{x} \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{e^{5 x/4}}}{x^2} \, dx\right )+\frac {5}{16} \int \frac {e^{e^{5 x/4}+\frac {5 x}{4}}}{x} \, dx+\int \left (1-2 x+6 x^5\right ) \, dx\\ &=x-x^2+x^6-\frac {1}{4} \int \frac {e^{e^{5 x/4}}}{x^2} \, dx+\frac {5}{16} \int \frac {e^{e^{5 x/4}+\frac {5 x}{4}}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 26, normalized size = 0.93 \begin {gather*} \frac {e^{e^{5 x/4}}}{4 x}+x-x^2+x^6 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 26, normalized size = 0.93 \begin {gather*} \frac {4 \, x^{7} - 4 \, x^{3} + 4 \, x^{2} + e^{\left (e^{\left (\frac {5}{4} \, x\right )}\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.86, size = 46, normalized size = 1.64 \begin {gather*} \frac {{\left (4 \, x^{7} e^{\left (\frac {5}{4} \, x\right )} - 4 \, x^{3} e^{\left (\frac {5}{4} \, x\right )} + 4 \, x^{2} e^{\left (\frac {5}{4} \, x\right )} + e^{\left (\frac {5}{4} \, x + e^{\left (\frac {5}{4} \, x\right )}\right )}\right )} e^{\left (-\frac {5}{4} \, x\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.75
method | result | size |
risch | \(x^{6}-x^{2}+x +\frac {{\mathrm e}^{{\mathrm e}^{\frac {5 x}{4}}}}{4 x}\) | \(21\) |
norman | \(\frac {x^{2}+x^{7}-x^{3}+\frac {{\mathrm e}^{{\mathrm e}^{\frac {5 x}{4}}}}{4}}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 20, normalized size = 0.71 \begin {gather*} x^{6} - x^{2} + x + \frac {e^{\left (e^{\left (\frac {5}{4} \, x\right )}\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 20, normalized size = 0.71 \begin {gather*} x-x^2+x^6+\frac {{\mathrm {e}}^{{\left ({\mathrm {e}}^x\right )}^{5/4}}}{4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.68 \begin {gather*} x^{6} - x^{2} + x + \frac {e^{e^{\frac {5 x}{4}}}}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________