Optimal. Leaf size=33 \[ -e^{3+x}+x-x \left (2 x-\frac {e^{-x^2} x \log (\log (4))}{\log (5)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 32, normalized size of antiderivative = 0.97, number of steps used = 10, number of rules used = 6, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {12, 6742, 2194, 2226, 2209, 2212} \begin {gather*} -2 x^2+\frac {e^{-x^2} x^2 \log (\log (4))}{\log (5)}+x-e^{x+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2209
Rule 2212
Rule 2226
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-x^2} \left (e^{x^2} \left (-e^{3+x} \log (5)+(1-4 x) \log (5)\right )+\left (2 x-2 x^3\right ) \log (\log (4))\right ) \, dx}{\log (5)}\\ &=\frac {\int \left (-\left (\left (-1+e^{3+x}+4 x\right ) \log (5)\right )-2 e^{-x^2} x \left (-1+x^2\right ) \log (\log (4))\right ) \, dx}{\log (5)}\\ &=-\frac {(2 \log (\log (4))) \int e^{-x^2} x \left (-1+x^2\right ) \, dx}{\log (5)}-\int \left (-1+e^{3+x}+4 x\right ) \, dx\\ &=x-2 x^2-\frac {(2 \log (\log (4))) \int \left (-e^{-x^2} x+e^{-x^2} x^3\right ) \, dx}{\log (5)}-\int e^{3+x} \, dx\\ &=-e^{3+x}+x-2 x^2+\frac {(2 \log (\log (4))) \int e^{-x^2} x \, dx}{\log (5)}-\frac {(2 \log (\log (4))) \int e^{-x^2} x^3 \, dx}{\log (5)}\\ &=-e^{3+x}+x-2 x^2-\frac {e^{-x^2} \log (\log (4))}{\log (5)}+\frac {e^{-x^2} x^2 \log (\log (4))}{\log (5)}-\frac {(2 \log (\log (4))) \int e^{-x^2} x \, dx}{\log (5)}\\ &=-e^{3+x}+x-2 x^2+\frac {e^{-x^2} x^2 \log (\log (4))}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 32, normalized size = 0.97 \begin {gather*} -e^{3+x}+x-2 x^2+\frac {e^{-x^2} x^2 \log (\log (4))}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 47, normalized size = 1.42 \begin {gather*} \frac {{\left (x^{2} \log \left (2 \, \log \relax (2)\right ) - {\left ({\left (2 \, x^{2} - x\right )} \log \relax (5) + e^{\left (x + 3\right )} \log \relax (5)\right )} e^{\left (x^{2}\right )}\right )} e^{\left (-x^{2}\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 48, normalized size = 1.45 \begin {gather*} -\frac {2 \, x^{2} \log \relax (5) - {\left (x^{2} \log \relax (2) + x^{2} \log \left (\log \relax (2)\right )\right )} e^{\left (-x^{2}\right )} - x \log \relax (5) + e^{\left (x + 3\right )} \log \relax (5)}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 34, normalized size = 1.03
method | result | size |
risch | \(-2 x^{2}+x +\frac {\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right ) x^{2} {\mathrm e}^{-x^{2}}}{\ln \relax (5)}-{\mathrm e}^{3+x}\) | \(34\) |
norman | \(\left ({\mathrm e}^{x^{2}} x +\frac {\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right ) x^{2}}{\ln \relax (5)}-2 x^{2} {\mathrm e}^{x^{2}}-{\mathrm e}^{x^{2}} {\mathrm e}^{3+x}\right ) {\mathrm e}^{-x^{2}}\) | \(48\) |
default | \(\frac {-2 x^{2} \ln \relax (5)+\ln \relax (2) {\mathrm e}^{-x^{2}} x^{2}+\ln \left (\ln \relax (2)\right ) {\mathrm e}^{-x^{2}} x^{2}-\ln \relax (5) {\mathrm e}^{x} {\mathrm e}^{3}+x \ln \relax (5)}{\ln \relax (5)}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 56, normalized size = 1.70 \begin {gather*} -\frac {2 \, x^{2} \log \relax (5) - {\left (x^{2} + 1\right )} e^{\left (-x^{2}\right )} \log \left (2 \, \log \relax (2)\right ) - x \log \relax (5) + e^{\left (x + 3\right )} \log \relax (5) + e^{\left (-x^{2}\right )} \log \left (2 \, \log \relax (2)\right )}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 46, normalized size = 1.39 \begin {gather*} x-{\mathrm {e}}^{x+3}-2\,x^2+\frac {x^2\,{\mathrm {e}}^{-x^2}\,\ln \relax (2)}{\ln \relax (5)}+\frac {x^2\,{\mathrm {e}}^{-x^2}\,\ln \left (\ln \relax (2)\right )}{\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 34, normalized size = 1.03 \begin {gather*} - 2 x^{2} + x + \frac {\left (x^{2} \log {\left (\log {\relax (2 )} \right )} + x^{2} \log {\relax (2 )}\right ) e^{- x^{2}}}{\log {\relax (5 )}} - e^{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________