Optimal. Leaf size=31 \[ \frac {e^{\frac {2 x}{3}+\frac {2 \log (4)}{e^4}}}{5 e^{-x} x-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 \left (e^4 x+3 \log (4)\right )}{3 e^4}} \left (3 e^{2 x}+e^x \left (-15 x+25 x^2\right )\right )-2 e^{2 x+\frac {2 \left (e^4 x+3 \log (4)\right )}{3 e^4}} x \log (x)}{75 x^3-30 e^x x^2 \log (x)+3 e^{2 x} x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16^{\frac {1}{e^4}} e^{5 x/3} \left (3 e^x+5 x (-3+5 x)-2 e^x x \log (x)\right )}{3 x \left (5 x-e^x \log (x)\right )^2} \, dx\\ &=\frac {1}{3} 16^{\frac {1}{e^4}} \int \frac {e^{5 x/3} \left (3 e^x+5 x (-3+5 x)-2 e^x x \log (x)\right )}{x \left (5 x-e^x \log (x)\right )^2} \, dx\\ &=\frac {1}{3} 16^{\frac {1}{e^4}} \int \left (\frac {15 e^{5 x/3} (1-\log (x)+x \log (x))}{\log (x) \left (-5 x+e^x \log (x)\right )^2}+\frac {e^{5 x/3} (-3+2 x \log (x))}{x \log (x) \left (5 x-e^x \log (x)\right )}\right ) \, dx\\ &=\frac {1}{3} 16^{\frac {1}{e^4}} \int \frac {e^{5 x/3} (-3+2 x \log (x))}{x \log (x) \left (5 x-e^x \log (x)\right )} \, dx+\left (5\ 16^{\frac {1}{e^4}}\right ) \int \frac {e^{5 x/3} (1-\log (x)+x \log (x))}{\log (x) \left (-5 x+e^x \log (x)\right )^2} \, dx\\ &=\frac {1}{3} 16^{\frac {1}{e^4}} \int \left (\frac {2 e^{5 x/3}}{5 x-e^x \log (x)}-\frac {3 e^{5 x/3}}{x \log (x) \left (5 x-e^x \log (x)\right )}\right ) \, dx+\left (5\ 16^{\frac {1}{e^4}}\right ) \int \left (-\frac {e^{5 x/3}}{\left (5 x-e^x \log (x)\right )^2}+\frac {e^{5 x/3} x}{\left (5 x-e^x \log (x)\right )^2}+\frac {e^{5 x/3}}{\log (x) \left (-5 x+e^x \log (x)\right )^2}\right ) \, dx\\ &=\frac {1}{3} 2^{1+\frac {4}{e^4}} \int \frac {e^{5 x/3}}{5 x-e^x \log (x)} \, dx-16^{\frac {1}{e^4}} \int \frac {e^{5 x/3}}{x \log (x) \left (5 x-e^x \log (x)\right )} \, dx-\left (5\ 16^{\frac {1}{e^4}}\right ) \int \frac {e^{5 x/3}}{\left (5 x-e^x \log (x)\right )^2} \, dx+\left (5\ 16^{\frac {1}{e^4}}\right ) \int \frac {e^{5 x/3} x}{\left (5 x-e^x \log (x)\right )^2} \, dx+\left (5\ 16^{\frac {1}{e^4}}\right ) \int \frac {e^{5 x/3}}{\log (x) \left (-5 x+e^x \log (x)\right )^2} \, dx\\ &=2^{1+\frac {4}{e^4}} \operatorname {Subst}\left (\int \frac {e^{5 x}}{15 x-e^{3 x} \log (3 x)} \, dx,x,\frac {x}{3}\right )-16^{\frac {1}{e^4}} \int \frac {e^{5 x/3}}{x \log (x) \left (5 x-e^x \log (x)\right )} \, dx+\left (5\ 16^{\frac {1}{e^4}}\right ) \int \frac {e^{5 x/3} x}{\left (5 x-e^x \log (x)\right )^2} \, dx-\left (15\ 16^{\frac {1}{e^4}}\right ) \operatorname {Subst}\left (\int \frac {e^{5 x}}{\left (15 x-e^{3 x} \log (3 x)\right )^2} \, dx,x,\frac {x}{3}\right )+\left (15\ 16^{\frac {1}{e^4}}\right ) \operatorname {Subst}\left (\int \frac {e^{5 x}}{\log (3 x) \left (-15 x+e^{3 x} \log (3 x)\right )^2} \, dx,x,\frac {x}{3}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 26, normalized size = 0.84 \begin {gather*} -\frac {16^{\frac {1}{e^4}} e^{5 x/3}}{-5 x+e^x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 23, normalized size = 0.74 \begin {gather*} -\frac {2^{4 \, e^{\left (-4\right )}} e^{\left (\frac {5}{3} \, x\right )}}{e^{x} \log \relax (x) - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.36, size = 44, normalized size = 1.42 \begin {gather*} -\frac {5 \cdot 2^{4 \, e^{\left (-4\right )}} x e^{\left (\frac {2}{3} \, x\right )} + 2^{4 \, e^{\left (-4\right )}} e^{\left (\frac {5}{3} \, x\right )} \log \relax (x)}{e^{x} \log \relax (x)^{2} - 5 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 24, normalized size = 0.77
method | result | size |
risch | \(\frac {2^{4 \,{\mathrm e}^{-4}} {\mathrm e}^{\frac {5 x}{3}}}{-{\mathrm e}^{x} \ln \relax (x )+5 x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 23, normalized size = 0.74 \begin {gather*} -\frac {2^{4 \, e^{\left (-4\right )}} e^{\left (\frac {5}{3} \, x\right )}}{e^{x} \log \relax (x) - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.56, size = 21, normalized size = 0.68 \begin {gather*} \frac {{16}^{{\mathrm {e}}^{-4}}\,{\mathrm {e}}^{\frac {5\,x}{3}}}{5\,x-{\mathrm {e}}^x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 24, normalized size = 0.77 \begin {gather*} - \frac {2^{\frac {4}{e^{4}}} e^{\frac {5 x}{3}}}{- 5 x + e^{x} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________