Optimal. Leaf size=22 \[ \frac {10 x}{8+\log \left (3-\frac {x^2}{2}-x^4\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-480+60 x^2+80 x^4+\left (-60+10 x^2+20 x^4\right ) \log \left (\frac {1}{2} \left (6-x^2-2 x^4\right )\right )}{-384+64 x^2+128 x^4+\left (-96+16 x^2+32 x^4\right ) \log \left (\frac {1}{2} \left (6-x^2-2 x^4\right )\right )+\left (-6+x^2+2 x^4\right ) \log ^2\left (\frac {1}{2} \left (6-x^2-2 x^4\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 \left (48-6 x^2-8 x^4-\left (-6+x^2+2 x^4\right ) \log \left (3-\frac {x^2}{2}-x^4\right )\right )}{\left (6-x^2-2 x^4\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx\\ &=10 \int \frac {48-6 x^2-8 x^4-\left (-6+x^2+2 x^4\right ) \log \left (3-\frac {x^2}{2}-x^4\right )}{\left (6-x^2-2 x^4\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx\\ &=10 \int \left (\frac {2 x^2 \left (1+4 x^2\right )}{\left (6-x^2-2 x^4\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}+\frac {1}{8+\log \left (3-\frac {x^2}{2}-x^4\right )}\right ) \, dx\\ &=10 \int \frac {1}{8+\log \left (3-\frac {x^2}{2}-x^4\right )} \, dx+20 \int \frac {x^2 \left (1+4 x^2\right )}{\left (6-x^2-2 x^4\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx\\ &=10 \int \frac {1}{8+\log \left (3-\frac {x^2}{2}-x^4\right )} \, dx+20 \int \left (-\frac {2}{\left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}+\frac {2}{\left (2+x^2\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}-\frac {3}{\left (-3+2 x^2\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}\right ) \, dx\\ &=10 \int \frac {1}{8+\log \left (3-\frac {x^2}{2}-x^4\right )} \, dx-40 \int \frac {1}{\left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx+40 \int \frac {1}{\left (2+x^2\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx-60 \int \frac {1}{\left (-3+2 x^2\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx\\ &=10 \int \frac {1}{8+\log \left (3-\frac {x^2}{2}-x^4\right )} \, dx-40 \int \frac {1}{\left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx+40 \int \left (\frac {i}{2 \sqrt {2} \left (i \sqrt {2}-x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}+\frac {i}{2 \sqrt {2} \left (i \sqrt {2}+x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}\right ) \, dx-60 \int \left (-\frac {1}{2 \sqrt {3} \left (\sqrt {3}-\sqrt {2} x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}-\frac {1}{2 \sqrt {3} \left (\sqrt {3}+\sqrt {2} x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2}\right ) \, dx\\ &=10 \int \frac {1}{8+\log \left (3-\frac {x^2}{2}-x^4\right )} \, dx-40 \int \frac {1}{\left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx+\left (10 i \sqrt {2}\right ) \int \frac {1}{\left (i \sqrt {2}-x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx+\left (10 i \sqrt {2}\right ) \int \frac {1}{\left (i \sqrt {2}+x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx+\left (10 \sqrt {3}\right ) \int \frac {1}{\left (\sqrt {3}-\sqrt {2} x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx+\left (10 \sqrt {3}\right ) \int \frac {1}{\left (\sqrt {3}+\sqrt {2} x\right ) \left (8+\log \left (3-\frac {x^2}{2}-x^4\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 22, normalized size = 1.00 \begin {gather*} \frac {10 x}{8+\log \left (3-\frac {x^2}{2}-x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 20, normalized size = 0.91 \begin {gather*} \frac {10 \, x}{\log \left (-x^{4} - \frac {1}{2} \, x^{2} + 3\right ) + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 20, normalized size = 0.91 \begin {gather*} \frac {10 \, x}{\log \left (-x^{4} - \frac {1}{2} \, x^{2} + 3\right ) + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.95
method | result | size |
norman | \(\frac {10 x}{\ln \left (-x^{4}-\frac {1}{2} x^{2}+3\right )+8}\) | \(21\) |
risch | \(\frac {10 x}{\ln \left (-x^{4}-\frac {1}{2} x^{2}+3\right )+8}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 27, normalized size = 1.23 \begin {gather*} -\frac {10 \, x}{\log \relax (2) - \log \left (x^{2} + 2\right ) - \log \left (-2 \, x^{2} + 3\right ) - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.91, size = 20, normalized size = 0.91 \begin {gather*} \frac {10\,x}{\ln \left (-x^4-\frac {x^2}{2}+3\right )+8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 15, normalized size = 0.68 \begin {gather*} \frac {10 x}{\log {\left (- x^{4} - \frac {x^{2}}{2} + 3 \right )} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________