Optimal. Leaf size=14 \[ \frac {3}{-4+(x-\log (x))^4} \]
________________________________________________________________________________________
Rubi [B] time = 0.54, antiderivative size = 40, normalized size of antiderivative = 2.86, number of steps used = 3, number of rules used = 3, integrand size = 157, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {3}{-x^4+4 x^3 \log (x)-6 x^2 \log ^2(x)-\log ^4(x)+4 x \log ^3(x)+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 (1-x) (x-\log (x))^3}{x \left (4-x^4+4 x^3 \log (x)-6 x^2 \log ^2(x)+4 x \log ^3(x)-\log ^4(x)\right )^2} \, dx\\ &=12 \int \frac {(1-x) (x-\log (x))^3}{x \left (4-x^4+4 x^3 \log (x)-6 x^2 \log ^2(x)+4 x \log ^3(x)-\log ^4(x)\right )^2} \, dx\\ &=-\frac {3}{4-x^4+4 x^3 \log (x)-6 x^2 \log ^2(x)+4 x \log ^3(x)-\log ^4(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 36, normalized size = 2.57 \begin {gather*} \frac {3}{-4+x^4-4 x^3 \log (x)+6 x^2 \log ^2(x)-4 x \log ^3(x)+\log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 36, normalized size = 2.57 \begin {gather*} \frac {3}{x^{4} - 4 \, x^{3} \log \relax (x) + 6 \, x^{2} \log \relax (x)^{2} - 4 \, x \log \relax (x)^{3} + \log \relax (x)^{4} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 36, normalized size = 2.57 \begin {gather*} \frac {3}{x^{4} - 4 \, x^{3} \log \relax (x) + 6 \, x^{2} \log \relax (x)^{2} - 4 \, x \log \relax (x)^{3} + \log \relax (x)^{4} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 37, normalized size = 2.64
method | result | size |
risch | \(\frac {3}{\ln \relax (x )^{4}-4 x \ln \relax (x )^{3}+6 x^{2} \ln \relax (x )^{2}-4 x^{3} \ln \relax (x )+x^{4}-4}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 36, normalized size = 2.57 \begin {gather*} \frac {3}{x^{4} - 4 \, x^{3} \log \relax (x) + 6 \, x^{2} \log \relax (x)^{2} - 4 \, x \log \relax (x)^{3} + \log \relax (x)^{4} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.07 \begin {gather*} \int \frac {{\ln \relax (x)}^2\,\left (36\,x-36\,x^2\right )-\ln \relax (x)\,\left (36\,x^2-36\,x^3\right )+12\,x^3-12\,x^4+{\ln \relax (x)}^3\,\left (12\,x-12\right )}{16\,x+\ln \relax (x)\,\left (32\,x^4-8\,x^8\right )-{\ln \relax (x)}^4\,\left (8\,x-70\,x^5\right )+x\,{\ln \relax (x)}^8-{\ln \relax (x)}^2\,\left (48\,x^3-28\,x^7\right )+{\ln \relax (x)}^3\,\left (32\,x^2-56\,x^6\right )-8\,x^2\,{\ln \relax (x)}^7+28\,x^3\,{\ln \relax (x)}^6-56\,x^4\,{\ln \relax (x)}^5-8\,x^5+x^9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 37, normalized size = 2.64 \begin {gather*} \frac {3}{x^{4} - 4 x^{3} \log {\relax (x )} + 6 x^{2} \log {\relax (x )}^{2} - 4 x \log {\relax (x )}^{3} + \log {\relax (x )}^{4} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________