Optimal. Leaf size=19 \[ -4 e^{-x} x \left (\frac {3}{11-x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 32, normalized size of antiderivative = 1.68, number of steps used = 12, number of rules used = 6, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {27, 2199, 2194, 2177, 2178, 2176} \begin {gather*} -4 e^{-x} x^2+12 e^{-x}-\frac {132 e^{-x}}{11-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-132-836 x+648 x^2-96 x^3+4 x^4\right )}{(-11+x)^2} \, dx\\ &=\int \left (-12 e^{-x}-\frac {132 e^{-x}}{(-11+x)^2}-\frac {132 e^{-x}}{-11+x}-8 e^{-x} x+4 e^{-x} x^2\right ) \, dx\\ &=4 \int e^{-x} x^2 \, dx-8 \int e^{-x} x \, dx-12 \int e^{-x} \, dx-132 \int \frac {e^{-x}}{(-11+x)^2} \, dx-132 \int \frac {e^{-x}}{-11+x} \, dx\\ &=12 e^{-x}-\frac {132 e^{-x}}{11-x}+8 e^{-x} x-4 e^{-x} x^2-\frac {132 \text {Ei}(11-x)}{e^{11}}-8 \int e^{-x} \, dx+8 \int e^{-x} x \, dx+132 \int \frac {e^{-x}}{-11+x} \, dx\\ &=20 e^{-x}-\frac {132 e^{-x}}{11-x}-4 e^{-x} x^2+8 \int e^{-x} \, dx\\ &=12 e^{-x}-\frac {132 e^{-x}}{11-x}-4 e^{-x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 21, normalized size = 1.11 \begin {gather*} -\frac {4 e^{-x} x \left (-3-11 x+x^2\right )}{-11+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 23, normalized size = 1.21 \begin {gather*} -\frac {4 \, {\left (x^{3} - 11 \, x^{2} - 3 \, x\right )} e^{\left (-x\right )}}{x - 11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.68 \begin {gather*} -\frac {4 \, {\left (x^{3} e^{\left (-x\right )} - 11 \, x^{2} e^{\left (-x\right )} - 3 \, x e^{\left (-x\right )}\right )}}{x - 11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 21, normalized size = 1.11
method | result | size |
gosper | \(-\frac {4 x \left (x^{2}-11 x -3\right ) {\mathrm e}^{-x}}{x -11}\) | \(21\) |
risch | \(-\frac {4 x \left (x^{2}-11 x -3\right ) {\mathrm e}^{-x}}{x -11}\) | \(21\) |
derivativedivides | \(-4 x^{2} {\mathrm e}^{-x}+12 \,{\mathrm e}^{-x}-\frac {132 \,{\mathrm e}^{-x}}{11-x}\) | \(30\) |
default | \(-4 x^{2} {\mathrm e}^{-x}+12 \,{\mathrm e}^{-x}-\frac {132 \,{\mathrm e}^{-x}}{11-x}\) | \(30\) |
norman | \(\frac {12 x \,{\mathrm e}^{-x}+44 x^{2} {\mathrm e}^{-x}-4 x^{3} {\mathrm e}^{-x}}{x -11}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {4 \, {\left (x^{3} - 11 \, x^{2} - 3 \, x\right )} e^{\left (-x\right )}}{x - 11} + \frac {132 \, e^{\left (-11\right )} E_{2}\left (x - 11\right )}{x - 11} + 132 \, \int \frac {e^{\left (-x\right )}}{x^{2} - 22 \, x + 121}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.41, size = 22, normalized size = 1.16 \begin {gather*} \frac {4\,x\,{\mathrm {e}}^{-x}\,\left (-x^2+11\,x+3\right )}{x-11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 1.00 \begin {gather*} \frac {\left (- 4 x^{3} + 44 x^{2} + 12 x\right ) e^{- x}}{x - 11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________