Optimal. Leaf size=20 \[ (2+x)^4 \left (x^2+\frac {64 e^{32} x}{\log ^2(2)}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 82, normalized size of antiderivative = 4.10, number of steps used = 4, number of rules used = 1, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {12} \begin {gather*} x^6+8 x^5+\frac {64 e^{32} x^5}{\log ^2(2)}+24 x^4+\frac {512 e^{32} x^4}{\log ^2(2)}+32 x^3+\frac {1536 e^{32} x^3}{\log ^2(2)}+16 x^2+\frac {2048 e^{32} x^2}{\log ^2(2)}+\frac {1024 e^{32} x}{\log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^{32} \left (1024+4096 x+4608 x^2+2048 x^3+320 x^4\right )+\left (32 x+96 x^2+96 x^3+40 x^4+6 x^5\right ) \log ^2(2)\right ) \, dx}{\log ^2(2)}\\ &=\frac {e^{32} \int \left (1024+4096 x+4608 x^2+2048 x^3+320 x^4\right ) \, dx}{\log ^2(2)}+\int \left (32 x+96 x^2+96 x^3+40 x^4+6 x^5\right ) \, dx\\ &=16 x^2+32 x^3+24 x^4+8 x^5+x^6+\frac {1024 e^{32} x}{\log ^2(2)}+\frac {2048 e^{32} x^2}{\log ^2(2)}+\frac {1536 e^{32} x^3}{\log ^2(2)}+\frac {512 e^{32} x^4}{\log ^2(2)}+\frac {64 e^{32} x^5}{\log ^2(2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 1.15 \begin {gather*} \frac {x (2+x)^4 \left (64 e^{32}+x \log ^2(2)\right )}{\log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.52, size = 61, normalized size = 3.05 \begin {gather*} \frac {{\left (x^{6} + 8 \, x^{5} + 24 \, x^{4} + 32 \, x^{3} + 16 \, x^{2}\right )} \log \relax (2)^{2} + 64 \, {\left (x^{5} + 8 \, x^{4} + 24 \, x^{3} + 32 \, x^{2} + 16 \, x\right )} e^{32}}{\log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 61, normalized size = 3.05 \begin {gather*} \frac {{\left (x^{6} + 8 \, x^{5} + 24 \, x^{4} + 32 \, x^{3} + 16 \, x^{2}\right )} \log \relax (2)^{2} + 64 \, {\left (x^{5} + 8 \, x^{4} + 24 \, x^{3} + 32 \, x^{2} + 16 \, x\right )} e^{32}}{\log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 65, normalized size = 3.25
method | result | size |
default | \(\frac {\ln \relax (2)^{2} \left (x^{6}+8 x^{5}+24 x^{4}+32 x^{3}+16 x^{2}\right )+{\mathrm e}^{32} \left (64 x^{5}+512 x^{4}+1536 x^{3}+2048 x^{2}+1024 x \right )}{\ln \relax (2)^{2}}\) | \(65\) |
risch | \(x^{6}+8 x^{5}+\frac {64 \,{\mathrm e}^{32} x^{5}}{\ln \relax (2)^{2}}+24 x^{4}+\frac {512 x^{4} {\mathrm e}^{32}}{\ln \relax (2)^{2}}+32 x^{3}+\frac {1536 \,{\mathrm e}^{32} x^{3}}{\ln \relax (2)^{2}}+16 x^{2}+\frac {2048 \,{\mathrm e}^{32} x^{2}}{\ln \relax (2)^{2}}+\frac {1024 \,{\mathrm e}^{32} x}{\ln \relax (2)^{2}}\) | \(78\) |
gosper | \(\frac {x \left (x^{5} \ln \relax (2)^{2}+8 x^{4} \ln \relax (2)^{2}+64 x^{4} {\mathrm e}^{32}+24 x^{3} \ln \relax (2)^{2}+512 \,{\mathrm e}^{32} x^{3}+32 x^{2} \ln \relax (2)^{2}+1536 \,{\mathrm e}^{32} x^{2}+16 x \ln \relax (2)^{2}+2048 \,{\mathrm e}^{32} x +1024 \,{\mathrm e}^{32}\right )}{\ln \relax (2)^{2}}\) | \(90\) |
norman | \(\frac {x^{6} \ln \relax (2)+\frac {8 \left (\ln \relax (2)^{2}+8 \,{\mathrm e}^{32}\right ) x^{5}}{\ln \relax (2)}+\frac {32 \left (\ln \relax (2)^{2}+48 \,{\mathrm e}^{32}\right ) x^{3}}{\ln \relax (2)}+\frac {16 \left (\ln \relax (2)^{2}+128 \,{\mathrm e}^{32}\right ) x^{2}}{\ln \relax (2)}+\frac {8 \left (3 \ln \relax (2)^{2}+64 \,{\mathrm e}^{32}\right ) x^{4}}{\ln \relax (2)}+\frac {1024 \,{\mathrm e}^{32} x}{\ln \relax (2)}}{\ln \relax (2)}\) | \(106\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 61, normalized size = 3.05 \begin {gather*} \frac {{\left (x^{6} + 8 \, x^{5} + 24 \, x^{4} + 32 \, x^{3} + 16 \, x^{2}\right )} \log \relax (2)^{2} + 64 \, {\left (x^{5} + 8 \, x^{4} + 24 \, x^{3} + 32 \, x^{2} + 16 \, x\right )} e^{32}}{\log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 93, normalized size = 4.65 \begin {gather*} x^6+\frac {\left (320\,{\mathrm {e}}^{32}+40\,{\ln \relax (2)}^2\right )\,x^5}{5\,{\ln \relax (2)}^2}+\frac {\left (2048\,{\mathrm {e}}^{32}+96\,{\ln \relax (2)}^2\right )\,x^4}{4\,{\ln \relax (2)}^2}+\frac {\left (4608\,{\mathrm {e}}^{32}+96\,{\ln \relax (2)}^2\right )\,x^3}{3\,{\ln \relax (2)}^2}+\frac {\left (4096\,{\mathrm {e}}^{32}+32\,{\ln \relax (2)}^2\right )\,x^2}{2\,{\ln \relax (2)}^2}+\frac {1024\,{\mathrm {e}}^{32}\,x}{{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.08, size = 95, normalized size = 4.75 \begin {gather*} x^{6} + \frac {x^{5} \left (8 \log {\relax (2 )}^{2} + 64 e^{32}\right )}{\log {\relax (2 )}^{2}} + \frac {x^{4} \left (24 \log {\relax (2 )}^{2} + 512 e^{32}\right )}{\log {\relax (2 )}^{2}} + \frac {x^{3} \left (32 \log {\relax (2 )}^{2} + 1536 e^{32}\right )}{\log {\relax (2 )}^{2}} + \frac {x^{2} \left (16 \log {\relax (2 )}^{2} + 2048 e^{32}\right )}{\log {\relax (2 )}^{2}} + \frac {1024 x e^{32}}{\log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________