Optimal. Leaf size=28 \[ e^{\left (e^{x+\frac {4}{\log \left ((2+2 x) \left (x+x^2\right )\right )}}+2 x\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 10.64, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 4, number of rules used = 4, integrand size = 299, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {1593, 6688, 12, 6706} \begin {gather*} e^{\left (2 x+e^{x+\frac {4}{\log \left (2 x (x+1)^2\right )}}\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\exp \left (\frac {2 \left (4+x \log \left (2 x+4 x^2+2 x^3\right )\right )}{\log \left (2 x+4 x^2+2 x^3\right )}\right )+4 \exp \left (\frac {4+x \log \left (2 x+4 x^2+2 x^3\right )}{\log \left (2 x+4 x^2+2 x^3\right )}\right ) x+4 x^2\right ) \left (\left (8 x^2+8 x^3\right ) \log ^2\left (2 x+4 x^2+2 x^3\right )+\exp \left (\frac {2 \left (4+x \log \left (2 x+4 x^2+2 x^3\right )\right )}{\log \left (2 x+4 x^2+2 x^3\right )}\right ) \left (-8-24 x+\left (2 x+2 x^2\right ) \log ^2\left (2 x+4 x^2+2 x^3\right )\right )+\exp \left (\frac {4+x \log \left (2 x+4 x^2+2 x^3\right )}{\log \left (2 x+4 x^2+2 x^3\right )}\right ) \left (-16 x-48 x^2+\left (4 x+8 x^2+4 x^3\right ) \log ^2\left (2 x+4 x^2+2 x^3\right )\right )\right )}{x (1+x) \log ^2\left (2 x+4 x^2+2 x^3\right )} \, dx\\ &=\int \frac {2 e^{\left (e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}+2 x\right )^2} \left (e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}+2 x\right ) \left (-4 e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}} (1+3 x)+\left (2+e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}\right ) x (1+x) \log ^2\left (2 x (1+x)^2\right )\right )}{x (1+x) \log ^2\left (2 x (1+x)^2\right )} \, dx\\ &=2 \int \frac {e^{\left (e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}+2 x\right )^2} \left (e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}+2 x\right ) \left (-4 e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}} (1+3 x)+\left (2+e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}\right ) x (1+x) \log ^2\left (2 x (1+x)^2\right )\right )}{x (1+x) \log ^2\left (2 x (1+x)^2\right )} \, dx\\ &=e^{\left (e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}+2 x\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 25, normalized size = 0.89 \begin {gather*} e^{\left (e^{x+\frac {4}{\log \left (2 x (1+x)^2\right )}}+2 x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 87, normalized size = 3.11 \begin {gather*} e^{\left (4 \, x^{2} + 4 \, x e^{\left (\frac {x \log \left (2 \, x^{3} + 4 \, x^{2} + 2 \, x\right ) + 4}{\log \left (2 \, x^{3} + 4 \, x^{2} + 2 \, x\right )}\right )} + e^{\left (\frac {2 \, {\left (x \log \left (2 \, x^{3} + 4 \, x^{2} + 2 \, x\right ) + 4\right )}}{\log \left (2 \, x^{3} + 4 \, x^{2} + 2 \, x\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.34, size = 88, normalized size = 3.14
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {2 x \ln \left (2 x^{3}+4 x^{2}+2 x \right )+8}{\ln \left (2 x^{3}+4 x^{2}+2 x \right )}}+4 x \,{\mathrm e}^{\frac {x \ln \left (2 x^{3}+4 x^{2}+2 x \right )+4}{\ln \left (2 x^{3}+4 x^{2}+2 x \right )}}+4 x^{2}}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.80, size = 48, normalized size = 1.71 \begin {gather*} e^{\left (4 \, x^{2} + 4 \, x e^{\left (x + \frac {4}{\log \relax (2) + 2 \, \log \left (x + 1\right ) + \log \relax (x)}\right )} + e^{\left (2 \, x + \frac {8}{\log \relax (2) + 2 \, \log \left (x + 1\right ) + \log \relax (x)}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.75, size = 59, normalized size = 2.11 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{\frac {8}{\ln \left (2\,x^3+4\,x^2+2\,x\right )}}\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^{\frac {4}{\ln \left (2\,x^3+4\,x^2+2\,x\right )}}\,{\mathrm {e}}^x}\,{\mathrm {e}}^{4\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 8.98, size = 82, normalized size = 2.93 \begin {gather*} e^{4 x^{2} + 4 x e^{\frac {x \log {\left (2 x^{3} + 4 x^{2} + 2 x \right )} + 4}{\log {\left (2 x^{3} + 4 x^{2} + 2 x \right )}}} + e^{\frac {2 \left (x \log {\left (2 x^{3} + 4 x^{2} + 2 x \right )} + 4\right )}{\log {\left (2 x^{3} + 4 x^{2} + 2 x \right )}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________