Optimal. Leaf size=22 \[ \frac {x \left (5-9 x+\frac {x}{\log (4 x)}\right )}{5 \log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 35, normalized size of antiderivative = 1.59, number of steps used = 8, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {12, 6742, 2306, 2309, 2178} \begin {gather*} \frac {x^2}{5 \log (4) \log (4 x)}-\frac {9 x^2}{5 \log (4)}+\frac {x}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-x+2 x \log (4 x)+(5-18 x) \log ^2(4 x)}{\log ^2(4 x)} \, dx}{5 \log (4)}\\ &=\frac {\int \left (5-18 x-\frac {x}{\log ^2(4 x)}+\frac {2 x}{\log (4 x)}\right ) \, dx}{5 \log (4)}\\ &=\frac {x}{\log (4)}-\frac {9 x^2}{5 \log (4)}-\frac {\int \frac {x}{\log ^2(4 x)} \, dx}{5 \log (4)}+\frac {2 \int \frac {x}{\log (4 x)} \, dx}{5 \log (4)}\\ &=\frac {x}{\log (4)}-\frac {9 x^2}{5 \log (4)}+\frac {x^2}{5 \log (4) \log (4 x)}+\frac {\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (4 x)\right )}{40 \log (4)}-\frac {2 \int \frac {x}{\log (4 x)} \, dx}{5 \log (4)}\\ &=\frac {x}{\log (4)}-\frac {9 x^2}{5 \log (4)}+\frac {\text {Ei}(2 \log (4 x))}{40 \log (4)}+\frac {x^2}{5 \log (4) \log (4 x)}-\frac {\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (4 x)\right )}{40 \log (4)}\\ &=\frac {x}{\log (4)}-\frac {9 x^2}{5 \log (4)}+\frac {x^2}{5 \log (4) \log (4 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 1.23 \begin {gather*} \frac {5 x-9 x^2+\frac {x^2}{\log (4 x)}}{5 \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 31, normalized size = 1.41 \begin {gather*} \frac {x^{2} - {\left (9 \, x^{2} - 5 \, x\right )} \log \left (4 \, x\right )}{10 \, \log \relax (2) \log \left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 26, normalized size = 1.18 \begin {gather*} -\frac {9 \, x^{2} - 5 \, x - \frac {x^{2}}{\log \left (4 \, x\right )}}{10 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 1.18
method | result | size |
default | \(\frac {-9 x^{2}+5 x +\frac {x^{2}}{\ln \left (4 x \right )}}{10 \ln \relax (2)}\) | \(26\) |
derivativedivides | \(\frac {-144 x^{2}+80 x +\frac {16 x^{2}}{\ln \left (4 x \right )}}{160 \ln \relax (2)}\) | \(27\) |
risch | \(-\frac {9 x^{2}}{10 \ln \relax (2)}+\frac {x}{2 \ln \relax (2)}+\frac {x^{2}}{10 \ln \relax (2) \ln \left (4 x \right )}\) | \(33\) |
norman | \(\frac {\frac {x^{2}}{10 \ln \relax (2)}+\frac {x \ln \left (4 x \right )}{2 \ln \relax (2)}-\frac {9 x^{2} \ln \left (4 x \right )}{10 \ln \relax (2)}}{\ln \left (4 x \right )}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 32, normalized size = 1.45 \begin {gather*} -\frac {72 \, x^{2} - 40 \, x - {\rm Ei}\left (2 \, \log \left (4 \, x\right )\right ) + \Gamma \left (-1, -2 \, \log \left (4 \, x\right )\right )}{80 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.39, size = 28, normalized size = 1.27 \begin {gather*} \frac {x^2}{10\,\ln \left (4\,x\right )\,\ln \relax (2)}-\frac {x\,\left (9\,x-5\right )}{10\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 29, normalized size = 1.32 \begin {gather*} - \frac {9 x^{2}}{10 \log {\relax (2 )}} + \frac {x^{2}}{10 \log {\relax (2 )} \log {\left (4 x \right )}} + \frac {x}{2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________