Optimal. Leaf size=14 \[ x \left (\frac {3}{2}+x\right ) \log (3-\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 0.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3+2 x+(-9-12 x+(3+4 x) \log (x)) \log (3-\log (x))}{-6+2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3-2 x-(-9-12 x+(3+4 x) \log (x)) \log (3-\log (x))}{2 (3-\log (x))} \, dx\\ &=\frac {1}{2} \int \frac {-3-2 x-(-9-12 x+(3+4 x) \log (x)) \log (3-\log (x))}{3-\log (x)} \, dx\\ &=\frac {1}{2} \int \left (\frac {3+2 x}{-3+\log (x)}+(3+4 x) \log (3-\log (x))\right ) \, dx\\ &=\frac {1}{2} \int \frac {3+2 x}{-3+\log (x)} \, dx+\frac {1}{2} \int (3+4 x) \log (3-\log (x)) \, dx\\ &=\frac {1}{2} \int \left (\frac {3}{-3+\log (x)}+\frac {2 x}{-3+\log (x)}\right ) \, dx+\frac {1}{2} \int (3 \log (3-\log (x))+4 x \log (3-\log (x))) \, dx\\ &=\frac {3}{2} \int \frac {1}{-3+\log (x)} \, dx+\frac {3}{2} \int \log (3-\log (x)) \, dx+2 \int x \log (3-\log (x)) \, dx+\int \frac {x}{-3+\log (x)} \, dx\\ &=\frac {3}{2} \int \log (3-\log (x)) \, dx+\frac {3}{2} \operatorname {Subst}\left (\int \frac {e^x}{-3+x} \, dx,x,\log (x)\right )+2 \int x \log (3-\log (x)) \, dx+\operatorname {Subst}\left (\int \frac {e^{2 x}}{-3+x} \, dx,x,\log (x)\right )\\ &=e^6 \text {Ei}(-2 (3-\log (x)))+\frac {3}{2} e^3 \text {Ei}(-3+\log (x))+\frac {3}{2} \int \log (3-\log (x)) \, dx+2 \int x \log (3-\log (x)) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 17, normalized size = 1.21 \begin {gather*} \frac {1}{2} x (3+2 x) \log (3-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 18, normalized size = 1.29 \begin {gather*} \frac {1}{2} \, {\left (2 \, x^{2} + 3 \, x\right )} \log \left (-\log \relax (x) + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.57, size = 22, normalized size = 1.57 \begin {gather*} x^{2} \log \left (-\log \relax (x) + 3\right ) + \frac {3}{2} \, x \log \left (-\log \relax (x) + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 1.14
method | result | size |
risch | \(\left (x^{2}+\frac {3}{2} x \right ) \ln \left (3-\ln \relax (x )\right )\) | \(16\) |
norman | \(x^{2} \ln \left (3-\ln \relax (x )\right )+\frac {3 \ln \left (3-\ln \relax (x )\right ) x}{2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {3}{2} \, e^{3} E_{1}\left (-\log \relax (x) + 3\right ) - e^{6} E_{1}\left (-2 \, \log \relax (x) + 6\right ) + \frac {1}{2} \, {\left (2 \, x^{2} + 3 \, x\right )} \log \left (-\log \relax (x) + 3\right ) - \frac {1}{2} \, \int \frac {2 \, x + 3}{\log \relax (x) - 3}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 15, normalized size = 1.07 \begin {gather*} \frac {x\,\ln \left (3-\ln \relax (x)\right )\,\left (2\,x+3\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 14, normalized size = 1.00 \begin {gather*} \left (x^{2} + \frac {3 x}{2}\right ) \log {\left (3 - \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________