Optimal. Leaf size=29 \[ \left (3+4 e^{\left (\frac {3}{2}+\log \left (e^3 \left (1+e^x\right ) x\right )\right )^2}-\log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [B] time = 1.19, size = 71, normalized size = 2.45 \begin {gather*} 16 e^{\frac {81}{2}+2 \log ^2\left (\left (1+e^x\right ) x\right )} \left (1+e^x\right )^{18} x^{18}-8 e^{\frac {81}{4}+\log ^2\left (\left (1+e^x\right ) x\right )} \left (1+e^x\right )^9 x^9 (-3+\log (x))-6 \log (x)+\log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 81, normalized size = 2.79 \begin {gather*} -8 \, {\left (\log \relax (x) - 3\right )} e^{\left (\log \left (x e^{3} + x e^{\left (x + 3\right )}\right )^{2} + 3 \, \log \left (x e^{3} + x e^{\left (x + 3\right )}\right ) + \frac {9}{4}\right )} + \log \relax (x)^{2} + 16 \, e^{\left (2 \, \log \left (x e^{3} + x e^{\left (x + 3\right )}\right )^{2} + 6 \, \log \left (x e^{3} + x e^{\left (x + 3\right )}\right ) + \frac {9}{2}\right )} - 6 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (16 \, {\left (3 \, {\left (x + 1\right )} e^{x} + 2 \, {\left ({\left (x + 1\right )} e^{x} + 1\right )} \log \left (x e^{3} + x e^{\left (x + 3\right )}\right ) + 3\right )} e^{\left (2 \, \log \left (x e^{3} + x e^{\left (x + 3\right )}\right )^{2} + 6 \, \log \left (x e^{3} + x e^{\left (x + 3\right )}\right ) + \frac {9}{2}\right )} + 4 \, {\left ({\left (9 \, x + 8\right )} e^{x} + 2 \, {\left (3 \, {\left (x + 1\right )} e^{x} - {\left ({\left (x + 1\right )} e^{x} + 1\right )} \log \relax (x) + 3\right )} \log \left (x e^{3} + x e^{\left (x + 3\right )}\right ) - 3 \, {\left ({\left (x + 1\right )} e^{x} + 1\right )} \log \relax (x) + 8\right )} e^{\left (\log \left (x e^{3} + x e^{\left (x + 3\right )}\right )^{2} + 3 \, \log \left (x e^{3} + x e^{\left (x + 3\right )}\right ) + \frac {9}{4}\right )} + {\left (e^{x} + 1\right )} \log \relax (x) - 3 \, e^{x} - 3\right )}}{x e^{x} + x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.38, size = 971, normalized size = 33.48
method | result | size |
risch | \(\ln \relax (x )^{2}-6 \ln \relax (x )+16 \left ({\mathrm e}^{x}+1\right )^{2 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} \left ({\mathrm e}^{x}+1\right )^{4 \ln \relax (x )} \left ({\mathrm e}^{x}+1\right )^{-2 i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} x^{-2 i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} \left ({\mathrm e}^{x}+1\right )^{-2 i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )} x^{-2 i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )} \left ({\mathrm e}^{x}+1\right )^{2 i \pi \,\mathrm {csgn}\left (i x \right )} x^{2 i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} x^{2 i \pi \,\mathrm {csgn}\left (i x \right )} \left ({\mathrm e}^{x}+1\right )^{6} x^{6} {\mathrm e}^{2 \ln \relax (x )^{2}+\frac {9}{2}+2 \ln \left ({\mathrm e}^{x}+1\right )^{2}} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{3} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )^{2} \mathrm {csgn}\left (i x \right )} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )^{2}}{2}} {\mathrm e}^{-2 \pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{5} \mathrm {csgn}\left (i x \right )} {\mathrm e}^{\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{5} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{4} \mathrm {csgn}\left (i x \right )^{2}}{2}} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{4} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )^{2}}{2}} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{6}}{2}}+\left (-8 \ln \relax (x )+24\right ) x^{3} \left ({\mathrm e}^{x}+1\right )^{3} x^{i \pi \,\mathrm {csgn}\left (i x \right )} x^{i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} \left ({\mathrm e}^{x}+1\right )^{i \pi \,\mathrm {csgn}\left (i x \right )} x^{-i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )} \left ({\mathrm e}^{x}+1\right )^{-i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )} x^{-i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} \left ({\mathrm e}^{x}+1\right )^{-i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} \left ({\mathrm e}^{x}+1\right )^{2 \ln \relax (x )} \left ({\mathrm e}^{x}+1\right )^{i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} {\mathrm e}^{\ln \relax (x )^{2}+\frac {9}{4}+\ln \left ({\mathrm e}^{x}+1\right )^{2}} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{3} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )^{2} \mathrm {csgn}\left (i x \right )}{2}} {\mathrm e}^{\frac {3 i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{2} \mathrm {csgn}\left (i x \right )}{2}} {\mathrm e}^{\frac {3 i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )}{2}} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )^{2}}{4}} {\mathrm e}^{-\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )}{2}} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{5} \mathrm {csgn}\left (i x \right )}{2}} {\mathrm e}^{\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{5} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )}{2}} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{4} \mathrm {csgn}\left (i x \right )^{2}}{4}} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{4} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )^{2}}{4}} {\mathrm e}^{-\frac {3 i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+1\right )\right )}{2}} {\mathrm e}^{-\frac {\pi ^{2} \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{6}}{4}} {\mathrm e}^{-\frac {3 i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+1\right )\right )^{3}}{2}}\) | \(971\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 474, normalized size = 16.34 \begin {gather*} 16 \, {\left (x^{18} e^{\frac {81}{2}} + x^{18} e^{\left (18 \, x + \frac {81}{2}\right )} + 18 \, x^{18} e^{\left (17 \, x + \frac {81}{2}\right )} + 153 \, x^{18} e^{\left (16 \, x + \frac {81}{2}\right )} + 816 \, x^{18} e^{\left (15 \, x + \frac {81}{2}\right )} + 3060 \, x^{18} e^{\left (14 \, x + \frac {81}{2}\right )} + 8568 \, x^{18} e^{\left (13 \, x + \frac {81}{2}\right )} + 18564 \, x^{18} e^{\left (12 \, x + \frac {81}{2}\right )} + 31824 \, x^{18} e^{\left (11 \, x + \frac {81}{2}\right )} + 43758 \, x^{18} e^{\left (10 \, x + \frac {81}{2}\right )} + 48620 \, x^{18} e^{\left (9 \, x + \frac {81}{2}\right )} + 43758 \, x^{18} e^{\left (8 \, x + \frac {81}{2}\right )} + 31824 \, x^{18} e^{\left (7 \, x + \frac {81}{2}\right )} + 18564 \, x^{18} e^{\left (6 \, x + \frac {81}{2}\right )} + 8568 \, x^{18} e^{\left (5 \, x + \frac {81}{2}\right )} + 3060 \, x^{18} e^{\left (4 \, x + \frac {81}{2}\right )} + 816 \, x^{18} e^{\left (3 \, x + \frac {81}{2}\right )} + 153 \, x^{18} e^{\left (2 \, x + \frac {81}{2}\right )} + 18 \, x^{18} e^{\left (x + \frac {81}{2}\right )}\right )} e^{\left (2 \, \log \relax (x)^{2} + 4 \, \log \relax (x) \log \left (e^{x} + 1\right ) + 2 \, \log \left (e^{x} + 1\right )^{2}\right )} - 8 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}} + {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (9 \, x\right )} + 9 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (8 \, x\right )} + 36 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (7 \, x\right )} + 84 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (6 \, x\right )} + 126 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (5 \, x\right )} + 126 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (4 \, x\right )} + 84 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (3 \, x\right )} + 36 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{\left (2 \, x\right )} + 9 \, {\left (x^{9} e^{\frac {81}{4}} \log \relax (x) - 3 \, x^{9} e^{\frac {81}{4}}\right )} e^{x}\right )} e^{\left (\log \relax (x)^{2} + 2 \, \log \relax (x) \log \left (e^{x} + 1\right ) + \log \left (e^{x} + 1\right )^{2}\right )} + \log \relax (x)^{2} - 6 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.97, size = 295, normalized size = 10.17 \begin {gather*} {\ln \relax (x)}^2-6\,\ln \relax (x)+96\,x^6\,{\mathrm {e}}^{2\,{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+x+\frac {45}{2}}-\left (8\,\ln \relax (x)-24\right )\,\left (3\,x^3\,{\mathrm {e}}^{{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+2\,x+\frac {45}{4}}+x^3\,{\mathrm {e}}^{{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+3\,x+\frac {45}{4}}+x^3\,{\mathrm {e}}^{{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+\frac {45}{4}}+3\,x^3\,{\mathrm {e}}^{{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+x+\frac {45}{4}}\right )+240\,x^6\,{\mathrm {e}}^{2\,{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+2\,x+\frac {45}{2}}+320\,x^6\,{\mathrm {e}}^{2\,{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+3\,x+\frac {45}{2}}+240\,x^6\,{\mathrm {e}}^{2\,{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+4\,x+\frac {45}{2}}+96\,x^6\,{\mathrm {e}}^{2\,{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+5\,x+\frac {45}{2}}+16\,x^6\,{\mathrm {e}}^{2\,{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+6\,x+\frac {45}{2}}+16\,x^6\,{\mathrm {e}}^{2\,{\ln \left (x\,{\mathrm {e}}^3+x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )}^2+\frac {45}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________