Optimal. Leaf size=33 \[ e^{e^{\frac {1+\left (-4+2 x-\frac {5 \left (-x+x^3\right )}{-3+e^5}\right )^2}{x}}} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [B] time = 1.83, size = 77, normalized size = 2.33 \begin {gather*} e^{e^{\frac {153-24 x+x^2-120 x^3+10 x^4+25 x^6+e^{10} \left (17-16 x+4 x^2\right )-2 e^5 \left (51-28 x+2 x^2-20 x^3+10 x^4\right )}{\left (-3+e^5\right )^2 x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 246, normalized size = 7.45 \begin {gather*} e^{\left (\frac {25 \, x^{6} + 10 \, x^{4} - 120 \, x^{3} + x^{2} + {\left (4 \, x^{2} - 16 \, x + 17\right )} e^{10} - 2 \, {\left (10 \, x^{4} - 20 \, x^{3} + 2 \, x^{2} - 28 \, x + 51\right )} e^{5} + {\left (x e^{10} - 6 \, x e^{5} + 9 \, x\right )} e^{\left (\frac {25 \, x^{6} + 10 \, x^{4} - 120 \, x^{3} + x^{2} + {\left (4 \, x^{2} - 16 \, x + 17\right )} e^{10} - 2 \, {\left (10 \, x^{4} - 20 \, x^{3} + 2 \, x^{2} - 28 \, x + 51\right )} e^{5} - 24 \, x + 153}{x e^{10} - 6 \, x e^{5} + 9 \, x}\right )} - 24 \, x + 153}{x e^{10} - 6 \, x e^{5} + 9 \, x} - \frac {25 \, x^{6} + 10 \, x^{4} - 120 \, x^{3} + x^{2} + {\left (4 \, x^{2} - 16 \, x + 17\right )} e^{10} - 2 \, {\left (10 \, x^{4} - 20 \, x^{3} + 2 \, x^{2} - 28 \, x + 51\right )} e^{5} - 24 \, x + 153}{x e^{10} - 6 \, x e^{5} + 9 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (125 \, x^{6} + 30 \, x^{4} - 240 \, x^{3} + x^{2} + {\left (4 \, x^{2} - 17\right )} e^{10} - 2 \, {\left (30 \, x^{4} - 40 \, x^{3} + 2 \, x^{2} - 51\right )} e^{5} - 153\right )} e^{\left (\frac {25 \, x^{6} + 10 \, x^{4} - 120 \, x^{3} + x^{2} + {\left (4 \, x^{2} - 16 \, x + 17\right )} e^{10} - 2 \, {\left (10 \, x^{4} - 20 \, x^{3} + 2 \, x^{2} - 28 \, x + 51\right )} e^{5} - 24 \, x + 153}{x e^{10} - 6 \, x e^{5} + 9 \, x} + e^{\left (\frac {25 \, x^{6} + 10 \, x^{4} - 120 \, x^{3} + x^{2} + {\left (4 \, x^{2} - 16 \, x + 17\right )} e^{10} - 2 \, {\left (10 \, x^{4} - 20 \, x^{3} + 2 \, x^{2} - 28 \, x + 51\right )} e^{5} - 24 \, x + 153}{x e^{10} - 6 \, x e^{5} + 9 \, x}\right )}\right )}}{x^{2} e^{10} - 6 \, x^{2} e^{5} + 9 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 14.04, size = 82, normalized size = 2.48
method | result | size |
norman | \({\mathrm e}^{{\mathrm e}^{\frac {\left (4 x^{2}-16 x +17\right ) {\mathrm e}^{10}+\left (-20 x^{4}+40 x^{3}-4 x^{2}+56 x -102\right ) {\mathrm e}^{5}+25 x^{6}+10 x^{4}-120 x^{3}+x^{2}-24 x +153}{x \,{\mathrm e}^{10}-6 x \,{\mathrm e}^{5}+9 x}}}\) | \(82\) |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {25 x^{6}-20 x^{4} {\mathrm e}^{5}+40 x^{3} {\mathrm e}^{5}+10 x^{4}-4 x^{2} {\mathrm e}^{5}+4 \,{\mathrm e}^{10} x^{2}-120 x^{3}+56 x \,{\mathrm e}^{5}-16 x \,{\mathrm e}^{10}+x^{2}-102 \,{\mathrm e}^{5}+17 \,{\mathrm e}^{10}-24 x +153}{x \left ({\mathrm e}^{10}-6 \,{\mathrm e}^{5}+9\right )}}}\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 2.37, size = 213, normalized size = 6.45 \begin {gather*} e^{\left (e^{\left (\frac {25 \, x^{5}}{e^{10} - 6 \, e^{5} + 9} - \frac {20 \, x^{3} e^{5}}{e^{10} - 6 \, e^{5} + 9} + \frac {10 \, x^{3}}{e^{10} - 6 \, e^{5} + 9} + \frac {40 \, x^{2} e^{5}}{e^{10} - 6 \, e^{5} + 9} - \frac {120 \, x^{2}}{e^{10} - 6 \, e^{5} + 9} + \frac {4 \, x e^{10}}{e^{10} - 6 \, e^{5} + 9} - \frac {4 \, x e^{5}}{e^{10} - 6 \, e^{5} + 9} + \frac {x}{e^{10} - 6 \, e^{5} + 9} - \frac {16 \, e^{10}}{e^{10} - 6 \, e^{5} + 9} + \frac {56 \, e^{5}}{e^{10} - 6 \, e^{5} + 9} - \frac {24}{e^{10} - 6 \, e^{5} + 9} + \frac {17 \, e^{10}}{x {\left (e^{10} - 6 \, e^{5} + 9\right )}} - \frac {102 \, e^{5}}{x {\left (e^{10} - 6 \, e^{5} + 9\right )}} + \frac {153}{x {\left (e^{10} - 6 \, e^{5} + 9\right )}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.23, size = 232, normalized size = 7.03 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-\frac {16\,{\mathrm {e}}^{10}}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{\frac {56\,{\mathrm {e}}^5}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{\frac {x}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{\frac {17\,{\mathrm {e}}^{10}}{9\,x-6\,x\,{\mathrm {e}}^5+x\,{\mathrm {e}}^{10}}}\,{\mathrm {e}}^{-\frac {102\,{\mathrm {e}}^5}{9\,x-6\,x\,{\mathrm {e}}^5+x\,{\mathrm {e}}^{10}}}\,{\mathrm {e}}^{\frac {10\,x^3}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{\frac {25\,x^5}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{-\frac {120\,x^2}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{-\frac {4\,x\,{\mathrm {e}}^5}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{\frac {4\,x\,{\mathrm {e}}^{10}}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{-\frac {24}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{\frac {153}{9\,x-6\,x\,{\mathrm {e}}^5+x\,{\mathrm {e}}^{10}}}\,{\mathrm {e}}^{-\frac {20\,x^3\,{\mathrm {e}}^5}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}\,{\mathrm {e}}^{\frac {40\,x^2\,{\mathrm {e}}^5}{{\mathrm {e}}^{10}-6\,{\mathrm {e}}^5+9}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.34, size = 78, normalized size = 2.36 \begin {gather*} e^{e^{\frac {25 x^{6} + 10 x^{4} - 120 x^{3} + x^{2} - 24 x + \left (4 x^{2} - 16 x + 17\right ) e^{10} + \left (- 20 x^{4} + 40 x^{3} - 4 x^{2} + 56 x - 102\right ) e^{5} + 153}{- 6 x e^{5} + 9 x + x e^{10}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________