Optimal. Leaf size=21 \[ e^{\left (\frac {1}{x}+\log (6+x)\right )^2}-(3-x) x \]
________________________________________________________________________________________
Rubi [F] time = 5.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-18 x^3+9 x^4+2 x^5+e^{\frac {1+2 x \log (6+x)+x^2 \log ^2(6+x)}{x^2}} \left (-12-2 x+2 x^2+\left (-12 x-2 x^2+2 x^3\right ) \log (6+x)\right )}{6 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-18 x^3+9 x^4+2 x^5+e^{\frac {1+2 x \log (6+x)+x^2 \log ^2(6+x)}{x^2}} \left (-12-2 x+2 x^2+\left (-12 x-2 x^2+2 x^3\right ) \log (6+x)\right )}{x^3 (6+x)} \, dx\\ &=\int \left (-3+2 x+\frac {2 e^{\frac {1}{x^2}+\log ^2(6+x)} (-3+x) (2+x) (6+x)^{-1+\frac {2}{x}} (1+x \log (6+x))}{x^3}\right ) \, dx\\ &=-3 x+x^2+2 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (-3+x) (2+x) (6+x)^{-1+\frac {2}{x}} (1+x \log (6+x))}{x^3} \, dx\\ &=-3 x+x^2+2 \int \left (\frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (-3+x) (2+x) (6+x)^{-1+\frac {2}{x}}}{x^3}+\frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (-3+x) (2+x) (6+x)^{-1+\frac {2}{x}} \log (6+x)}{x^2}\right ) \, dx\\ &=-3 x+x^2+2 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (-3+x) (2+x) (6+x)^{-1+\frac {2}{x}}}{x^3} \, dx+2 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (-3+x) (2+x) (6+x)^{-1+\frac {2}{x}} \log (6+x)}{x^2} \, dx\\ &=-3 x+x^2+2 \int \left (-\frac {6 e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}}}{x^3}-\frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}}}{x^2}+\frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}}}{x}\right ) \, dx+2 \int \left (e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}} \log (6+x)-\frac {6 e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}} \log (6+x)}{x^2}-\frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}} \log (6+x)}{x}\right ) \, dx\\ &=-3 x+x^2-2 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}}}{x^2} \, dx+2 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}}}{x} \, dx+2 \int e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}} \log (6+x) \, dx-2 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}} \log (6+x)}{x} \, dx-12 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}}}{x^3} \, dx-12 \int \frac {e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{-1+\frac {2}{x}} \log (6+x)}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.61, size = 29, normalized size = 1.38 \begin {gather*} -3 x+x^2+e^{\frac {1}{x^2}+\log ^2(6+x)} (6+x)^{2/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 31, normalized size = 1.48 \begin {gather*} x^{2} - 3 \, x + e^{\left (\frac {x^{2} \log \left (x + 6\right )^{2} + 2 \, x \log \left (x + 6\right ) + 1}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 27, normalized size = 1.29 \begin {gather*} x^{2} - 3 \, x + e^{\left (\log \left (x + 6\right )^{2} + \frac {2 \, \log \left (x + 6\right )}{x} + \frac {1}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 23, normalized size = 1.10
method | result | size |
risch | \(-3 x +{\mathrm e}^{\frac {\left (x \ln \left (x +6\right )+1\right )^{2}}{x^{2}}}+x^{2}\) | \(23\) |
default | \(-3 x +{\mathrm e}^{\frac {x^{2} \ln \left (x +6\right )^{2}+2 x \ln \left (x +6\right )+1}{x^{2}}}+x^{2}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 27, normalized size = 1.29 \begin {gather*} x^{2} - 3 \, x + e^{\left (\log \left (x + 6\right )^{2} + \frac {2 \, \log \left (x + 6\right )}{x} + \frac {1}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.76, size = 28, normalized size = 1.33 \begin {gather*} x^2-3\,x+{\mathrm {e}}^{{\ln \left (x+6\right )}^2}\,{\mathrm {e}}^{\frac {1}{x^2}}\,{\left (x+6\right )}^{2/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.51, size = 31, normalized size = 1.48 \begin {gather*} x^{2} - 3 x + e^{\frac {x^{2} \log {\left (x + 6 \right )}^{2} + 2 x \log {\left (x + 6 \right )} + 1}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________