Optimal. Leaf size=27 \[ e^{4 e^2-2 x}+\log (5)-\log \left (2 x^3 \left (5+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 7, number of rules used = 5, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {1593, 6725, 2194, 446, 72} \begin {gather*} -\log \left (x^2+5\right )+e^{4 e^2-2 x}-3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 446
Rule 1593
Rule 2194
Rule 6725
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15-5 x^2+e^{4 e^2-2 x} \left (-10 x-2 x^3\right )}{x \left (5+x^2\right )} \, dx\\ &=\int \left (-2 e^{4 e^2-2 x}-\frac {5 \left (3+x^2\right )}{x \left (5+x^2\right )}\right ) \, dx\\ &=-\left (2 \int e^{4 e^2-2 x} \, dx\right )-5 \int \frac {3+x^2}{x \left (5+x^2\right )} \, dx\\ &=e^{4 e^2-2 x}-\frac {5}{2} \operatorname {Subst}\left (\int \frac {3+x}{x (5+x)} \, dx,x,x^2\right )\\ &=e^{4 e^2-2 x}-\frac {5}{2} \operatorname {Subst}\left (\int \left (\frac {3}{5 x}+\frac {2}{5 (5+x)}\right ) \, dx,x,x^2\right )\\ &=e^{4 e^2-2 x}-3 \log (x)-\log \left (5+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 0.89 \begin {gather*} e^{4 e^2-2 x}-3 \log (x)-\log \left (5+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 22, normalized size = 0.81 \begin {gather*} e^{\left (-2 \, x + 4 \, e^{2}\right )} - \log \left (x^{2} + 5\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 22, normalized size = 0.81 \begin {gather*} e^{\left (-2 \, x + 4 \, e^{2}\right )} - \log \left (x^{2} + 5\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 23, normalized size = 0.85
method | result | size |
norman | \({\mathrm e}^{4 \,{\mathrm e}^{2}-2 x}-3 \ln \relax (x )-\ln \left (x^{2}+5\right )\) | \(23\) |
risch | \({\mathrm e}^{4 \,{\mathrm e}^{2}-2 x}-3 \ln \relax (x )-\ln \left (x^{2}+5\right )\) | \(23\) |
derivativedivides | \(-60 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )-5 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )-80 \,{\mathrm e}^{4} \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )+40 \,{\mathrm e}^{2} \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R} \ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )+20 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )+{\mathrm e}^{4 \,{\mathrm e}^{2}-2 x}+4 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\left (3 \textit {\_R1}^{2} {\mathrm e}^{2}-12 \textit {\_R1} \,{\mathrm e}^{4}+20 \,{\mathrm e}^{2}+16 \,{\mathrm e}^{6}-5 \textit {\_R1} \right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )-80 \,{\mathrm e}^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )-64 \,{\mathrm e}^{6} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )+48 \,{\mathrm e}^{4} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )-12 \,{\mathrm e}^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )\) | \(708\) |
default | \(-60 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )-5 \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )-80 \,{\mathrm e}^{4} \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )+40 \,{\mathrm e}^{2} \left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R} \ln \left (4 \,{\mathrm e}^{2}-2 x -\textit {\_R} \right )}{48 \,{\mathrm e}^{4}-24 \textit {\_R} \,{\mathrm e}^{2}+3 \textit {\_R}^{2}+20}\right )+20 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )+{\mathrm e}^{4 \,{\mathrm e}^{2}-2 x}+4 \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\left (3 \textit {\_R1}^{2} {\mathrm e}^{2}-12 \textit {\_R1} \,{\mathrm e}^{4}+20 \,{\mathrm e}^{2}+16 \,{\mathrm e}^{6}-5 \textit {\_R1} \right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )-80 \,{\mathrm e}^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )-64 \,{\mathrm e}^{6} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )+48 \,{\mathrm e}^{4} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R1} \,{\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )-12 \,{\mathrm e}^{2} \left (\munderset {\textit {\_R1} =\RootOf \left (\textit {\_Z}^{3}-12 \textit {\_Z}^{2} {\mathrm e}^{2}+\left (48 \,{\mathrm e}^{4}+20\right ) \textit {\_Z} -80 \,{\mathrm e}^{2}-64 \,{\mathrm e}^{6}\right )}{\sum }\frac {\textit {\_R1}^{2} {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -4 \,{\mathrm e}^{2}+2 x +\textit {\_R1} \right )}{-48 \,{\mathrm e}^{4}+24 \textit {\_R1} \,{\mathrm e}^{2}-3 \textit {\_R1}^{2}-20}\right )\) | \(708\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 22, normalized size = 0.81 \begin {gather*} e^{\left (-2 \, x + 4 \, e^{2}\right )} - \log \left (x^{2} + 5\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 23, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{4\,{\mathrm {e}}^2}\,{\mathrm {e}}^{-2\,x}-3\,\ln \relax (x)-\ln \left (x^2+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.74 \begin {gather*} e^{- 2 x + 4 e^{2}} - 3 \log {\relax (x )} - \log {\left (x^{2} + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________