Optimal. Leaf size=26 \[ 5+\left (-x+\log \left (\frac {x}{\left (x+2 x^2\right ) (-4+\log (8))}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 24, normalized size of antiderivative = 0.92, number of steps used = 3, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {6741, 12, 6686} \begin {gather*} \left (x-\log \left (-\frac {1}{(2 x+1) (4-\log (8))}\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 (3+2 x) \left (x-\log \left (\frac {1}{(1+2 x) (-4+\log (8))}\right )\right )}{1+2 x} \, dx\\ &=2 \int \frac {(3+2 x) \left (x-\log \left (\frac {1}{(1+2 x) (-4+\log (8))}\right )\right )}{1+2 x} \, dx\\ &=\left (x-\log \left (-\frac {1}{(1+2 x) (4-\log (8))}\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.81 \begin {gather*} \left (x-\log \left (\frac {1}{(1+2 x) (-4+\log (8))}\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 43, normalized size = 1.65 \begin {gather*} x^{2} - 2 \, x \log \left (\frac {1}{3 \, {\left (2 \, x + 1\right )} \log \relax (2) - 8 \, x - 4}\right ) + \log \left (\frac {1}{3 \, {\left (2 \, x + 1\right )} \log \relax (2) - 8 \, x - 4}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.31, size = 405, normalized size = 15.58 \begin {gather*} -\frac {1}{144} \, {\left (\frac {24 \, {\left (\frac {9 \, \log \relax (2)}{6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4} - \frac {12}{6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4} + 1\right )} \log \left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}{\frac {81 \, \log \relax (2)^{4}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{3}} - \frac {432 \, \log \relax (2)^{3}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{3}} + \frac {864 \, \log \relax (2)^{2}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{3}} - \frac {768 \, \log \relax (2)}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{3}} + \frac {256}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{3}}} + \frac {\frac {12 \, \log \relax (2)}{6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4} - \frac {648 \, \log \relax (2)^{2}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{2}} - \frac {16}{6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4} + \frac {1728 \, \log \relax (2)}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{2}} - \frac {1152}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{2}} + 9}{\frac {243 \, \log \relax (2)^{5}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{4}} - \frac {1620 \, \log \relax (2)^{4}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{4}} + \frac {4320 \, \log \relax (2)^{3}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{4}} - \frac {5760 \, \log \relax (2)^{2}}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{4}} + \frac {3840 \, \log \relax (2)}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{4}} - \frac {1024}{{\left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right )}^{4}}}\right )} {\left (3 \, \log \relax (2) - 4\right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 44, normalized size = 1.69
method | result | size |
norman | \(x^{2}+\ln \left (\frac {1}{3 \left (2 x +1\right ) \ln \relax (2)-8 x -4}\right )^{2}-2 x \ln \left (\frac {1}{3 \left (2 x +1\right ) \ln \relax (2)-8 x -4}\right )\) | \(44\) |
risch | \(x^{2}+2 x -\ln \left (2 x +1\right )+\frac {3 \ln \relax (2) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{3 \ln \relax (2)-4}-\frac {4 \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{3 \ln \relax (2)-4}-\frac {6 \ln \relax (2) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right ) x}{3 \ln \relax (2)-4}-\frac {3 \ln \relax (2) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{3 \ln \relax (2)-4}-\frac {6 \ln \relax (2) x}{3 \ln \relax (2)-4}+\frac {8 \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right ) x}{3 \ln \relax (2)-4}-\frac {3 \ln \relax (2)}{3 \ln \relax (2)-4}+\frac {4 \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{3 \ln \relax (2)-4}+\frac {8 x}{3 \ln \relax (2)-4}+\frac {4}{3 \ln \relax (2)-4}\) | \(236\) |
derivativedivides | \(\frac {9 \ln \relax (2)^{2} \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {9 \ln \relax (2)^{2} \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{\left (3 \ln \relax (2)-4\right )^{2}}-\frac {24 \ln \relax (2) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {3 \ln \relax (2) \left (-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right ) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )\right )}{\left (3 \ln \relax (2)-4\right )^{2}}-\frac {24 \ln \relax (2) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {16 \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {3 \left (2 x +1\right ) \ln \relax (2)}{2 \left (3 \ln \relax (2)-4\right )}-\frac {4 \left (-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right ) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )\right )}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {16 \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{\left (3 \ln \relax (2)-4\right )^{2}}-\frac {2 \left (2 x +1\right )}{3 \ln \relax (2)-4}+\frac {\left (2 x +1\right )^{2}}{4}\) | \(333\) |
default | \(\frac {9 \ln \relax (2)^{2} \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {9 \ln \relax (2)^{2} \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{\left (3 \ln \relax (2)-4\right )^{2}}-\frac {24 \ln \relax (2) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {3 \ln \relax (2) \left (-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right ) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )\right )}{\left (3 \ln \relax (2)-4\right )^{2}}-\frac {24 \ln \relax (2) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {16 \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )^{2}}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {3 \left (2 x +1\right ) \ln \relax (2)}{2 \left (3 \ln \relax (2)-4\right )}-\frac {4 \left (-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right ) \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )-\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )\right )}{\left (3 \ln \relax (2)-4\right )^{2}}+\frac {16 \ln \left (\frac {1}{\left (2 x +1\right ) \left (3 \ln \relax (2)-4\right )}\right )}{\left (3 \ln \relax (2)-4\right )^{2}}-\frac {2 \left (2 x +1\right )}{3 \ln \relax (2)-4}+\frac {\left (2 x +1\right )^{2}}{4}\) | \(333\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 57, normalized size = 2.19 \begin {gather*} x^{2} + {\left (2 \, x - \log \left (2 \, x + 1\right )\right )} \log \left (6 \, x \log \relax (2) - 8 \, x + 3 \, \log \relax (2) - 4\right ) + 2 \, \log \left (2 \, x + 1\right )^{2} + 3 \, \log \left (2 \, x + 1\right ) \log \left (3 \, \log \relax (2) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.11, size = 25, normalized size = 0.96 \begin {gather*} {\left (x-\ln \left (-\frac {1}{8\,x-3\,\ln \relax (2)\,\left (2\,x+1\right )+4}\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 41, normalized size = 1.58 \begin {gather*} x^{2} - 2 x \log {\left (\frac {1}{- 8 x + \left (6 x + 3\right ) \log {\relax (2 )} - 4} \right )} + \log {\left (\frac {1}{- 8 x + \left (6 x + 3\right ) \log {\relax (2 )} - 4} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________