Optimal. Leaf size=21 \[ \frac {23 (x+\log (x))}{4 x \log (5+4 (5+x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-92 x^2-92 x \log (x)+(575+92 x+(-575-92 x) \log (x)) \log (25+4 x)}{\left (100 x^2+16 x^3\right ) \log ^2(25+4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-92 x^2-92 x \log (x)+(575+92 x+(-575-92 x) \log (x)) \log (25+4 x)}{x^2 (100+16 x) \log ^2(25+4 x)} \, dx\\ &=\int \left (-\frac {23 (x+\log (x))}{x (25+4 x) \log ^2(25+4 x)}-\frac {23 (-1+\log (x))}{4 x^2 \log (25+4 x)}\right ) \, dx\\ &=-\left (\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\right )-23 \int \frac {x+\log (x)}{x (25+4 x) \log ^2(25+4 x)} \, dx\\ &=-\left (\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\right )-23 \int \left (\frac {x+\log (x)}{25 x \log ^2(25+4 x)}-\frac {4 (x+\log (x))}{25 (25+4 x) \log ^2(25+4 x)}\right ) \, dx\\ &=-\left (\frac {23}{25} \int \frac {x+\log (x)}{x \log ^2(25+4 x)} \, dx\right )+\frac {92}{25} \int \frac {x+\log (x)}{(25+4 x) \log ^2(25+4 x)} \, dx-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\\ &=-\left (\frac {23}{25} \int \left (\frac {1}{\log ^2(25+4 x)}+\frac {\log (x)}{x \log ^2(25+4 x)}\right ) \, dx\right )+\frac {92}{25} \int \left (\frac {x}{(25+4 x) \log ^2(25+4 x)}+\frac {\log (x)}{(25+4 x) \log ^2(25+4 x)}\right ) \, dx-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\\ &=-\left (\frac {23}{25} \int \frac {1}{\log ^2(25+4 x)} \, dx\right )-\frac {23}{25} \int \frac {\log (x)}{x \log ^2(25+4 x)} \, dx+\frac {92}{25} \int \frac {x}{(25+4 x) \log ^2(25+4 x)} \, dx+\frac {92}{25} \int \frac {\log (x)}{(25+4 x) \log ^2(25+4 x)} \, dx-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\\ &=-\left (\frac {23}{100} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,25+4 x\right )\right )-\frac {23}{25} \int \frac {\log (x)}{x \log ^2(25+4 x)} \, dx+\frac {23}{25} \operatorname {Subst}\left (\int \frac {-\frac {25}{4}+\frac {x}{4}}{x \log ^2(x)} \, dx,x,25+4 x\right )+\frac {23}{25} \operatorname {Subst}\left (\int \frac {\log \left (-\frac {25}{4}+\frac {x}{4}\right )}{x \log ^2(x)} \, dx,x,25+4 x\right )-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\\ &=\frac {23 (25+4 x)}{100 \log (25+4 x)}-\frac {23}{100} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,25+4 x\right )-\frac {23}{25} \int \frac {\log (x)}{x \log ^2(25+4 x)} \, dx+\frac {23}{25} \operatorname {Subst}\left (\int \left (\frac {1}{4 \log ^2(x)}-\frac {25}{4 x \log ^2(x)}\right ) \, dx,x,25+4 x\right )+\frac {23}{25} \operatorname {Subst}\left (\int \frac {\log \left (-\frac {25}{4}+\frac {x}{4}\right )}{x \log ^2(x)} \, dx,x,25+4 x\right )-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\\ &=\frac {23 (25+4 x)}{100 \log (25+4 x)}-\frac {23 \text {li}(25+4 x)}{100}+\frac {23}{100} \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,25+4 x\right )-\frac {23}{25} \int \frac {\log (x)}{x \log ^2(25+4 x)} \, dx+\frac {23}{25} \operatorname {Subst}\left (\int \frac {\log \left (-\frac {25}{4}+\frac {x}{4}\right )}{x \log ^2(x)} \, dx,x,25+4 x\right )-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx-\frac {23}{4} \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,25+4 x\right )\\ &=-\frac {23}{100} \text {li}(25+4 x)+\frac {23}{100} \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,25+4 x\right )-\frac {23}{25} \int \frac {\log (x)}{x \log ^2(25+4 x)} \, dx+\frac {23}{25} \operatorname {Subst}\left (\int \frac {\log \left (-\frac {25}{4}+\frac {x}{4}\right )}{x \log ^2(x)} \, dx,x,25+4 x\right )-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx-\frac {23}{4} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (25+4 x)\right )\\ &=\frac {23}{4 \log (25+4 x)}-\frac {23}{25} \int \frac {\log (x)}{x \log ^2(25+4 x)} \, dx+\frac {23}{25} \operatorname {Subst}\left (\int \frac {\log \left (-\frac {25}{4}+\frac {x}{4}\right )}{x \log ^2(x)} \, dx,x,25+4 x\right )-\frac {23}{4} \int \frac {-1+\log (x)}{x^2 \log (25+4 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 19, normalized size = 0.90 \begin {gather*} \frac {23 (x+\log (x))}{4 x \log (25+4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 17, normalized size = 0.81 \begin {gather*} \frac {23 \, {\left (x + \log \relax (x)\right )}}{4 \, x \log \left (4 \, x + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 17, normalized size = 0.81 \begin {gather*} \frac {23 \, {\left (x + \log \relax (x)\right )}}{4 \, x \log \left (4 \, x + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.86
method | result | size |
risch | \(\frac {\frac {23 x}{4}+\frac {23 \ln \relax (x )}{4}}{\ln \left (4 x +25\right ) x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 26, normalized size = 1.24 \begin {gather*} \frac {23}{4 \, \log \left (4 \, x + 25\right )} + \frac {23 \, \log \relax (x)}{4 \, x \log \left (4 \, x + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 17, normalized size = 0.81 \begin {gather*} \frac {23\,\left (x+\ln \relax (x)\right )}{4\,x\,\ln \left (4\,x+25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 17, normalized size = 0.81 \begin {gather*} \frac {23 x + 23 \log {\relax (x )}}{4 x \log {\left (4 x + 25 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________