Optimal. Leaf size=26 \[ \frac {e^{2 (-9+x)^2} x^2 \left (2 e^x+x\right )}{(-5+\log (x))^2} \]
________________________________________________________________________________________
Rubi [B] time = 1.40, antiderivative size = 107, normalized size of antiderivative = 4.12, number of steps used = 5, number of rules used = 3, integrand size = 116, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6688, 6742, 2288} \begin {gather*} \frac {e^{2 (9-x)^2} x^2 \left (-5 x^2+x^2 \log (x)+45 x-9 x \log (x)\right )}{(9-x) (5-\log (x))^3}-\frac {2 e^{2 (9-x)^2+x} x \left (-20 x^2+4 x^2 \log (x)+175 x-35 x \log (x)\right )}{(1-4 (9-x)) (5-\log (x))^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 (-9+x)^2} x \left (-e^x \left (-24+350 x-40 x^2\right )-x \left (-17+180 x-20 x^2\right )-\left (x \left (3-36 x+4 x^2\right )+e^x \left (4-70 x+8 x^2\right )\right ) \log (x)\right )}{(5-\log (x))^3} \, dx\\ &=\int \left (\frac {e^{2 (-9+x)^2} x^2 \left (-17+180 x-20 x^2+3 \log (x)-36 x \log (x)+4 x^2 \log (x)\right )}{(-5+\log (x))^3}+\frac {2 e^{2 (-9+x)^2+x} x \left (-12+175 x-20 x^2+2 \log (x)-35 x \log (x)+4 x^2 \log (x)\right )}{(-5+\log (x))^3}\right ) \, dx\\ &=2 \int \frac {e^{2 (-9+x)^2+x} x \left (-12+175 x-20 x^2+2 \log (x)-35 x \log (x)+4 x^2 \log (x)\right )}{(-5+\log (x))^3} \, dx+\int \frac {e^{2 (-9+x)^2} x^2 \left (-17+180 x-20 x^2+3 \log (x)-36 x \log (x)+4 x^2 \log (x)\right )}{(-5+\log (x))^3} \, dx\\ &=\frac {e^{2 (9-x)^2} x^2 \left (45 x-5 x^2-9 x \log (x)+x^2 \log (x)\right )}{(9-x) (5-\log (x))^3}-\frac {2 e^{2 (9-x)^2+x} x \left (175 x-20 x^2-35 x \log (x)+4 x^2 \log (x)\right )}{(1-4 (9-x)) (5-\log (x))^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 26, normalized size = 1.00 \begin {gather*} \frac {e^{2 (-9+x)^2} x^2 \left (2 e^x+x\right )}{(-5+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 35, normalized size = 1.35 \begin {gather*} \frac {{\left (x^{3} + 2 \, x^{2} e^{x}\right )} e^{\left (2 \, x^{2} - 36 \, x + 162\right )}}{\log \relax (x)^{2} - 10 \, \log \relax (x) + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 45, normalized size = 1.73 \begin {gather*} \frac {x^{3} e^{\left (2 \, x^{2} - 36 \, x + 162\right )} + 2 \, x^{2} e^{\left (2 \, x^{2} - 35 \, x + 162\right )}}{\log \relax (x)^{2} - 10 \, \log \relax (x) + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.96
method | result | size |
risch | \(\frac {x^{2} {\mathrm e}^{2 \left (x -9\right )^{2}} \left (2 \,{\mathrm e}^{x}+x \right )}{\left (\ln \relax (x )-5\right )^{2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 39, normalized size = 1.50 \begin {gather*} \frac {{\left (x^{3} e^{162} + 2 \, x^{2} e^{\left (x + 162\right )}\right )} e^{\left (2 \, x^{2} - 36 \, x\right )}}{\log \relax (x)^{2} - 10 \, \log \relax (x) + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 27, normalized size = 1.04 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{2\,x^2-36\,x+162}\,\left (x+2\,{\mathrm {e}}^x\right )}{{\left (\ln \relax (x)-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 34, normalized size = 1.31 \begin {gather*} \frac {\left (x^{3} + 2 x^{2} e^{x}\right ) e^{2 x^{2} - 36 x + 162}}{\log {\relax (x )}^{2} - 10 \log {\relax (x )} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________