Optimal. Leaf size=13 \[ 3 e^{e^{-x} x}+x \]
________________________________________________________________________________________
Rubi [F] time = 0.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-x} \left (e^x+e^{e^{-x} x} (3-3 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-3 e^{-x+e^{-x} x} (-1+x)\right ) \, dx\\ &=x-3 \int e^{-x+e^{-x} x} (-1+x) \, dx\\ &=x-3 \int e^{-e^{-x} \left (-1+e^x\right ) x} (-1+x) \, dx\\ &=x-3 \int \left (-e^{-e^{-x} \left (-1+e^x\right ) x}+e^{-e^{-x} \left (-1+e^x\right ) x} x\right ) \, dx\\ &=x+3 \int e^{-e^{-x} \left (-1+e^x\right ) x} \, dx-3 \int e^{-e^{-x} \left (-1+e^x\right ) x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 13, normalized size = 1.00 \begin {gather*} 3 e^{e^{-x} x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 11, normalized size = 0.85 \begin {gather*} x + 3 \, e^{\left (x e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 11, normalized size = 0.85 \begin {gather*} x + 3 \, e^{\left (x e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 12, normalized size = 0.92
method | result | size |
risch | \(x +3 \,{\mathrm e}^{x \,{\mathrm e}^{-x}}\) | \(12\) |
norman | \(\left ({\mathrm e}^{x} x +3 \,{\mathrm e}^{x} {\mathrm e}^{x \,{\mathrm e}^{-x}}\right ) {\mathrm e}^{-x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 11, normalized size = 0.85 \begin {gather*} x + 3 \, e^{\left (x e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 11, normalized size = 0.85 \begin {gather*} x+3\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 8, normalized size = 0.62 \begin {gather*} x + 3 e^{x e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________