Optimal. Leaf size=29 \[ -1-x+\frac {x}{\log (2)}+\frac {-4+x}{5 x \log \left (\frac {8}{x^2}\right )} \]
________________________________________________________________________________________
Rubi [C] time = 0.35, antiderivative size = 106, normalized size of antiderivative = 3.66, number of steps used = 12, number of rules used = 8, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {12, 6742, 2353, 2306, 2310, 2178, 2302, 30} \begin {gather*} \frac {\text {Ei}\left (\frac {1}{2} \log \left (\frac {8}{x^2}\right )\right )}{5 \sqrt {2} \sqrt {\frac {1}{x^2}} x}-\frac {\log (16) \text {Ei}\left (\frac {1}{2} \log \left (\frac {8}{x^2}\right )\right )}{20 \sqrt {2} \sqrt {\frac {1}{x^2}} x \log (2)}+\frac {1}{5 \log \left (\frac {8}{x^2}\right )}-\frac {4}{5 x \log \left (\frac {8}{x^2}\right )}+\frac {x (1-\log (2))}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2310
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {(-8+2 x) \log (2)+4 \log (2) \log \left (\frac {8}{x^2}\right )+\left (5 x^2-5 x^2 \log (2)\right ) \log ^2\left (\frac {8}{x^2}\right )}{x^2 \log ^2\left (\frac {8}{x^2}\right )} \, dx}{5 \log (2)}\\ &=\frac {\int \left (-5 (-1+\log (2))+\frac {2 (-4+x) \log (2)}{x^2 \log ^2\left (\frac {8}{x^2}\right )}+\frac {\log (16)}{x^2 \log \left (\frac {8}{x^2}\right )}\right ) \, dx}{5 \log (2)}\\ &=\frac {x (1-\log (2))}{\log (2)}+\frac {2}{5} \int \frac {-4+x}{x^2 \log ^2\left (\frac {8}{x^2}\right )} \, dx+\frac {\log (16) \int \frac {1}{x^2 \log \left (\frac {8}{x^2}\right )} \, dx}{5 \log (2)}\\ &=\frac {x (1-\log (2))}{\log (2)}+\frac {2}{5} \int \left (-\frac {4}{x^2 \log ^2\left (\frac {8}{x^2}\right )}+\frac {1}{x \log ^2\left (\frac {8}{x^2}\right )}\right ) \, dx-\frac {\log (16) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (\frac {8}{x^2}\right )\right )}{20 \sqrt {2} \sqrt {\frac {1}{x^2}} x \log (2)}\\ &=\frac {x (1-\log (2))}{\log (2)}-\frac {\text {Ei}\left (\frac {1}{2} \log \left (\frac {8}{x^2}\right )\right ) \log (16)}{20 \sqrt {2} \sqrt {\frac {1}{x^2}} x \log (2)}+\frac {2}{5} \int \frac {1}{x \log ^2\left (\frac {8}{x^2}\right )} \, dx-\frac {8}{5} \int \frac {1}{x^2 \log ^2\left (\frac {8}{x^2}\right )} \, dx\\ &=\frac {x (1-\log (2))}{\log (2)}-\frac {\text {Ei}\left (\frac {1}{2} \log \left (\frac {8}{x^2}\right )\right ) \log (16)}{20 \sqrt {2} \sqrt {\frac {1}{x^2}} x \log (2)}-\frac {4}{5 x \log \left (\frac {8}{x^2}\right )}-\frac {1}{5} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (\frac {8}{x^2}\right )\right )-\frac {4}{5} \int \frac {1}{x^2 \log \left (\frac {8}{x^2}\right )} \, dx\\ &=\frac {x (1-\log (2))}{\log (2)}-\frac {\text {Ei}\left (\frac {1}{2} \log \left (\frac {8}{x^2}\right )\right ) \log (16)}{20 \sqrt {2} \sqrt {\frac {1}{x^2}} x \log (2)}+\frac {1}{5 \log \left (\frac {8}{x^2}\right )}-\frac {4}{5 x \log \left (\frac {8}{x^2}\right )}+\frac {\operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (\frac {8}{x^2}\right )\right )}{5 \sqrt {2} \sqrt {\frac {1}{x^2}} x}\\ &=\frac {\text {Ei}\left (\frac {1}{2} \log \left (\frac {8}{x^2}\right )\right )}{5 \sqrt {2} \sqrt {\frac {1}{x^2}} x}+\frac {x (1-\log (2))}{\log (2)}-\frac {\text {Ei}\left (\frac {1}{2} \log \left (\frac {8}{x^2}\right )\right ) \log (16)}{20 \sqrt {2} \sqrt {\frac {1}{x^2}} x \log (2)}+\frac {1}{5 \log \left (\frac {8}{x^2}\right )}-\frac {4}{5 x \log \left (\frac {8}{x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 33, normalized size = 1.14 \begin {gather*} \frac {-5 x (-1+\log (2))+\frac {(-4+x) \log (2)}{x \log \left (\frac {8}{x^2}\right )}}{5 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 44, normalized size = 1.52 \begin {gather*} \frac {{\left (x - 4\right )} \log \relax (2) - 5 \, {\left (x^{2} \log \relax (2) - x^{2}\right )} \log \left (\frac {8}{x^{2}}\right )}{5 \, x \log \relax (2) \log \left (\frac {8}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.17, size = 40, normalized size = 1.38 \begin {gather*} -\frac {5 \, x {\left (\log \relax (2) - 1\right )} - \frac {x \log \relax (2) - 4 \, \log \relax (2)}{3 \, x \log \relax (2) - x \log \left (x^{2}\right )}}{5 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 27, normalized size = 0.93
method | result | size |
risch | \(-x +\frac {x}{\ln \relax (2)}+\frac {x -4}{5 x \ln \left (\frac {8}{x^{2}}\right )}\) | \(27\) |
norman | \(\frac {-\frac {4}{5}+\frac {x}{5}-\frac {\left (\ln \relax (2)-1\right ) x^{2} \ln \left (\frac {8}{x^{2}}\right )}{\ln \relax (2)}}{\ln \left (\frac {8}{x^{2}}\right ) x}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 39, normalized size = 1.34 \begin {gather*} -\frac {5 \, x \log \relax (2) - 5 \, x - \frac {x \log \relax (2) - 4 \, \log \relax (2)}{3 \, x \log \relax (2) - 2 \, x \log \relax (x)}}{5 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.53, size = 42, normalized size = 1.45 \begin {gather*} -\frac {x\,\left (\ln \left (32\right )-5\right )}{5\,\ln \relax (2)}-\frac {\frac {x\,\ln \left (16\right )}{5}-\frac {x^2\,\ln \relax (2)}{5}}{x^2\,\ln \relax (2)\,\ln \left (\frac {8}{x^2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.76 \begin {gather*} \frac {x \left (1 - \log {\relax (2 )}\right )}{\log {\relax (2 )}} + \frac {x - 4}{5 x \log {\left (\frac {8}{x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________