Optimal. Leaf size=19 \[ \frac {4 \left (1+x+\log \left (-\frac {1}{4}-e^{16}+x\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 25, normalized size of antiderivative = 1.32, number of steps used = 11, number of rules used = 9, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.170, Rules used = {6, 1593, 6741, 6742, 44, 2395, 36, 29, 31} \begin {gather*} \frac {4}{x}+\frac {4 \log \left (x+\frac {1}{4} \left (-1-4 e^{16}\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 29
Rule 31
Rule 36
Rule 44
Rule 1593
Rule 2395
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4-16 e^{16}+\left (-4-16 e^{16}+16 x\right ) \log \left (\frac {1}{4} \left (-1-4 e^{16}+4 x\right )\right )}{\left (1+4 e^{16}\right ) x^2-4 x^3} \, dx\\ &=\int \frac {-4-16 e^{16}+\left (-4-16 e^{16}+16 x\right ) \log \left (\frac {1}{4} \left (-1-4 e^{16}+4 x\right )\right )}{\left (1+4 e^{16}-4 x\right ) x^2} \, dx\\ &=\int \frac {-4 \left (1+4 e^{16}\right )+\left (-4-16 e^{16}+16 x\right ) \log \left (\frac {1}{4} \left (-1-4 e^{16}+4 x\right )\right )}{\left (1+4 e^{16}-4 x\right ) x^2} \, dx\\ &=\int \left (-\frac {4 \left (1+4 e^{16}\right )}{\left (1+4 e^{16}-4 x\right ) x^2}-\frac {4 \log \left (-\frac {1}{4}-e^{16}+x\right )}{x^2}\right ) \, dx\\ &=-\left (4 \int \frac {\log \left (-\frac {1}{4}-e^{16}+x\right )}{x^2} \, dx\right )-\left (4 \left (1+4 e^{16}\right )\right ) \int \frac {1}{\left (1+4 e^{16}-4 x\right ) x^2} \, dx\\ &=\frac {4 \log \left (\frac {1}{4} \left (-1-4 e^{16}\right )+x\right )}{x}-4 \int \frac {1}{x \left (-\frac {1}{4}-e^{16}+x\right )} \, dx-\left (4 \left (1+4 e^{16}\right )\right ) \int \left (\frac {16}{\left (1+4 e^{16}\right )^2 \left (1+4 e^{16}-4 x\right )}+\frac {1}{\left (1+4 e^{16}\right ) x^2}+\frac {4}{\left (1+4 e^{16}\right )^2 x}\right ) \, dx\\ &=\frac {4}{x}+\frac {16 \log \left (1+4 e^{16}-4 x\right )}{1+4 e^{16}}-\frac {16 \log (x)}{1+4 e^{16}}+\frac {4 \log \left (\frac {1}{4} \left (-1-4 e^{16}\right )+x\right )}{x}+\frac {16 \int \frac {1}{x} \, dx}{1+4 e^{16}}-\frac {16 \int \frac {1}{-\frac {1}{4}-e^{16}+x} \, dx}{1+4 e^{16}}\\ &=\frac {4}{x}+\frac {4 \log \left (\frac {1}{4} \left (-1-4 e^{16}\right )+x\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 18, normalized size = 0.95 \begin {gather*} \frac {4 \left (1+\log \left (-\frac {1}{4}-e^{16}+x\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 15, normalized size = 0.79 \begin {gather*} \frac {4 \, {\left (\log \left (x - e^{16} - \frac {1}{4}\right ) + 1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.98, size = 15, normalized size = 0.79 \begin {gather*} \frac {4 \, {\left (\log \left (x - e^{16} - \frac {1}{4}\right ) + 1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 19, normalized size = 1.00
method | result | size |
norman | \(\frac {4+4 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right )}{x}\) | \(19\) |
risch | \(\frac {4 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right )}{x}+\frac {4}{x}\) | \(20\) |
derivativedivides | \(\frac {16 \ln \left (4 x \right )}{4 \,{\mathrm e}^{16}+1}-\frac {16 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right ) \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right )}{\left (4 \,{\mathrm e}^{16}+1\right ) x}+\frac {64 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right ) {\mathrm e}^{16}}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}+\frac {16 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right )}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}-\frac {64 \ln \left (4 x \right ) {\mathrm e}^{16}}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}-\frac {16 \ln \left (4 x \right )}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}+\frac {16 \,{\mathrm e}^{16}}{\left (4 \,{\mathrm e}^{16}+1\right ) x}+\frac {4}{\left (4 \,{\mathrm e}^{16}+1\right ) x}\) | \(226\) |
default | \(\frac {16 \ln \left (4 x \right )}{4 \,{\mathrm e}^{16}+1}-\frac {16 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right ) \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right )}{\left (4 \,{\mathrm e}^{16}+1\right ) x}+\frac {64 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right ) {\mathrm e}^{16}}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}+\frac {16 \ln \left (-{\mathrm e}^{16}+x -\frac {1}{4}\right )}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}-\frac {64 \ln \left (4 x \right ) {\mathrm e}^{16}}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}-\frac {16 \ln \left (4 x \right )}{\left (4 \,{\mathrm e}^{16}+1\right )^{2}}+\frac {16 \,{\mathrm e}^{16}}{\left (4 \,{\mathrm e}^{16}+1\right ) x}+\frac {4}{\left (4 \,{\mathrm e}^{16}+1\right ) x}\) | \(226\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 167, normalized size = 8.79 \begin {gather*} 16 \, {\left (\frac {4 \, \log \left (4 \, x - 4 \, e^{16} - 1\right )}{16 \, e^{32} + 8 \, e^{16} + 1} - \frac {4 \, \log \relax (x)}{16 \, e^{32} + 8 \, e^{16} + 1} + \frac {1}{x {\left (4 \, e^{16} + 1\right )}}\right )} e^{16} + \frac {16 \, \log \left (4 \, x - 4 \, e^{16} - 1\right )}{16 \, e^{32} + 8 \, e^{16} + 1} - \frac {16 \, \log \relax (x)}{16 \, e^{32} + 8 \, e^{16} + 1} + \frac {16 \, \log \relax (x)}{4 \, e^{16} + 1} - \frac {4 \, {\left (8 \, e^{16} \log \relax (2) + {\left (4 \, x - 4 \, e^{16} - 1\right )} \log \left (4 \, x - 4 \, e^{16} - 1\right ) + 2 \, \log \relax (2)\right )}}{x {\left (4 \, e^{16} + 1\right )}} + \frac {4}{x {\left (4 \, e^{16} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.95, size = 16, normalized size = 0.84 \begin {gather*} \frac {4\,\ln \left (x-{\mathrm {e}}^{16}-\frac {1}{4}\right )+4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.79 \begin {gather*} \frac {4 \log {\left (x - e^{16} - \frac {1}{4} \right )}}{x} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________