Optimal. Leaf size=32 \[ \frac {6 e^x}{x \left (-\sqrt {e}-x-x^2+(3+\log (2))^2\right )} \]
________________________________________________________________________________________
Rubi [C] time = 15.17, antiderivative size = 1976, normalized size of antiderivative = 61.75, number of steps used = 32, number of rules used = 7, integrand size = 178, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {6, 6688, 12, 6742, 2177, 2178, 6728}
result too large to display
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2177
Rule 2178
Rule 6688
Rule 6728
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-54+\sqrt {e} (6-6 x)+66 x+12 x^2-6 x^3+(-36+36 x) \log (2)+(-6+6 x) \log ^2(2)\right )}{(81+e) x^2-18 x^3-17 x^4+2 x^5+x^6+\sqrt {e} \left (-18 x^2+2 x^3+2 x^4\right )+\left (108 x^2-12 \sqrt {e} x^2-12 x^3-12 x^4\right ) \log (2)+\left (54 x^2-2 \sqrt {e} x^2-2 x^3-2 x^4\right ) \log ^2(2)+12 x^2 \log ^3(2)+x^2 \log ^4(2)} \, dx\\ &=\int \frac {e^x \left (-54+\sqrt {e} (6-6 x)+66 x+12 x^2-6 x^3+(-36+36 x) \log (2)+(-6+6 x) \log ^2(2)\right )}{-18 x^3-17 x^4+2 x^5+x^6+\sqrt {e} \left (-18 x^2+2 x^3+2 x^4\right )+\left (108 x^2-12 \sqrt {e} x^2-12 x^3-12 x^4\right ) \log (2)+\left (54 x^2-2 \sqrt {e} x^2-2 x^3-2 x^4\right ) \log ^2(2)+x^2 \log ^4(2)+x^2 \left (81+e+12 \log ^3(2)\right )} \, dx\\ &=\int \frac {e^x \left (-54+\sqrt {e} (6-6 x)+66 x+12 x^2-6 x^3+(-36+36 x) \log (2)+(-6+6 x) \log ^2(2)\right )}{-18 x^3-17 x^4+2 x^5+x^6+\sqrt {e} \left (-18 x^2+2 x^3+2 x^4\right )+\left (108 x^2-12 \sqrt {e} x^2-12 x^3-12 x^4\right ) \log (2)+\left (54 x^2-2 \sqrt {e} x^2-2 x^3-2 x^4\right ) \log ^2(2)+x^2 \left (81+e+12 \log ^3(2)+\log ^4(2)\right )} \, dx\\ &=\int \frac {6 e^x \left (-9+\sqrt {e}+2 x^2-x^3-\log ^2(2)-\log (64)+x \left (11-\sqrt {e}+\log ^2(2)+\log (64)\right )\right )}{x^2 \left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2} \, dx\\ &=6 \int \frac {e^x \left (-9+\sqrt {e}+2 x^2-x^3-\log ^2(2)-\log (64)+x \left (11-\sqrt {e}+\log ^2(2)+\log (64)\right )\right )}{x^2 \left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2} \, dx\\ &=6 \int \left (\frac {e^x \left (-9+\sqrt {e}-\log ^2(2)-\log (64)\right )}{x^2 \left (\sqrt {e}-(3+\log (2))^2\right )^2}+\frac {e^x x \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )}{\left (\sqrt {e}-(3+\log (2))^2\right )^3 \left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )}+\frac {e^x \left (-81-e-66 \log (2)-6 \log ^3(2)-\log ^4(2)-7 \log (64)-\log ^2(64)-\log ^2(2) (18+\log (64))+2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )}{x \left (\sqrt {e}-(3+\log (2))^2\right )^3}+\frac {e^x \left (171+2 e+228 \log (2)+109 \log ^2(2)+24 \log ^3(2)+2 \log ^4(2)-\sqrt {e} \left (37+24 \log (2)+4 \log ^2(2)\right )-\log (64)+x \left (9-\sqrt {e}-6 \log ^3(2)-\log ^2(2) (35-\log (64))+\log (64)+\log ^2(64)\right )\right )}{\left (\sqrt {e}-(3+\log (2))^2\right )^2 \left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2}\right ) \, dx\\ &=\frac {6 \int \frac {e^x \left (171+2 e+228 \log (2)+109 \log ^2(2)+24 \log ^3(2)+2 \log ^4(2)-\sqrt {e} \left (37+24 \log (2)+4 \log ^2(2)\right )-\log (64)+x \left (9-\sqrt {e}-6 \log ^3(2)-\log ^2(2) (35-\log (64))+\log (64)+\log ^2(64)\right )\right )}{\left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^2}+\frac {\left (6 \left (-9+\sqrt {e}-\log ^2(2)-\log (64)\right )\right ) \int \frac {e^x}{x^2} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^2}-\frac {\left (6 \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )\right ) \int \frac {e^x}{x} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^3}+\frac {\left (6 \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )\right ) \int \frac {e^x x}{\sqrt {e}+x+x^2-(3+\log (2))^2} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^3}\\ &=\frac {6 e^x \left (9-\sqrt {e}+\log ^2(2)+\log (64)\right )}{x \left (\sqrt {e}-(3+\log (2))^2\right )^2}-\frac {6 \text {Ei}(x) \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )}{\left (\sqrt {e}-(3+\log (2))^2\right )^3}+\frac {6 \int \left (\frac {171 e^x \left (1+\frac {1}{171} \left (2 e+228 \log (2)+109 \log ^2(2)+24 \log ^3(2)+2 \log ^4(2)-\sqrt {e} \left (37+24 \log (2)+4 \log ^2(2)\right )-\log (64)\right )\right )}{\left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2}+\frac {e^x x \left (9-\sqrt {e}-6 \log ^3(2)-\log ^2(2) (35-\log (64))+\log (64)+\log ^2(64)\right )}{\left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2}\right ) \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^2}+\frac {\left (6 \left (-9+\sqrt {e}-\log ^2(2)-\log (64)\right )\right ) \int \frac {e^x}{x} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^2}+\frac {\left (6 \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )\right ) \int \left (\frac {e^x \left (1-\frac {1}{\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}}\right )}{1+2 x-\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}}+\frac {e^x \left (1+\frac {1}{\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}}\right )}{1+2 x+\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}}\right ) \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^3}\\ &=\frac {6 e^x \left (9-\sqrt {e}+\log ^2(2)+\log (64)\right )}{x \left (\sqrt {e}-(3+\log (2))^2\right )^2}-\frac {6 \text {Ei}(x) \left (9-\sqrt {e}+\log ^2(2)+\log (64)\right )}{\left (\sqrt {e}-(3+\log (2))^2\right )^2}-\frac {6 \text {Ei}(x) \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )}{\left (\sqrt {e}-(3+\log (2))^2\right )^3}-\frac {6 \int \frac {e^x x}{\left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2} \, dx}{\sqrt {e}-(3+\log (2))^2}+\frac {\left (6 \left (171+2 e+228 \log (2)+109 \log ^2(2)+24 \log ^3(2)+2 \log ^4(2)-\sqrt {e} \left (37+24 \log (2)+4 \log ^2(2)\right )-\log (64)\right )\right ) \int \frac {e^x}{\left (\sqrt {e}+x+x^2-(3+\log (2))^2\right )^2} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^2}+\frac {\left (6 \left (1-\frac {1}{\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}}\right ) \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )\right ) \int \frac {e^x}{1+2 x-\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^3}+\frac {\left (6 \left (1+\frac {1}{\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}}\right ) \left (81+e+66 \log (2)+6 \log ^3(2)+\log ^4(2)+7 \log (64)+\log ^2(64)+\log ^2(2) (18+\log (64))-2 \sqrt {e} \left (9+\log ^2(2)+\log (64)\right )\right )\right ) \int \frac {e^x}{1+2 x+\sqrt {37-4 \sqrt {e}+24 \log (2)+4 \log ^2(2)}} \, dx}{\left (\sqrt {e}-(3+\log (2))^2\right )^3}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 7.31, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^x \left (-54+\sqrt {e} (6-6 x)+66 x+12 x^2-6 x^3+(-36+36 x) \log (2)+(-6+6 x) \log ^2(2)\right )}{81 x^2+e x^2-18 x^3-17 x^4+2 x^5+x^6+\sqrt {e} \left (-18 x^2+2 x^3+2 x^4\right )+\left (108 x^2-12 \sqrt {e} x^2-12 x^3-12 x^4\right ) \log (2)+\left (54 x^2-2 \sqrt {e} x^2-2 x^3-2 x^4\right ) \log ^2(2)+12 x^2 \log ^3(2)+x^2 \log ^4(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 32, normalized size = 1.00 \begin {gather*} -\frac {6 \, e^{x}}{x^{3} - x \log \relax (2)^{2} + x^{2} + x e^{\frac {1}{2}} - 6 \, x \log \relax (2) - 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 31.81, size = 32, normalized size = 1.00 \begin {gather*} -\frac {12 \, e^{x}}{x^{3} - x \log \relax (2)^{2} + x^{2} + x e^{\frac {1}{2}} - 6 \, x \log \relax (2) - 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 32, normalized size = 1.00
method | result | size |
gosper | \(\frac {6 \,{\mathrm e}^{x}}{x \left (\ln \relax (2)^{2}-x^{2}+6 \ln \relax (2)-{\mathrm e}^{\frac {1}{2}}-x +9\right )}\) | \(32\) |
norman | \(\frac {6 \,{\mathrm e}^{x}}{x \left (\ln \relax (2)^{2}-x^{2}+6 \ln \relax (2)-{\mathrm e}^{\frac {1}{2}}-x +9\right )}\) | \(32\) |
default | \(\text {Expression too large to display}\) | \(57201\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.04, size = 30, normalized size = 0.94 \begin {gather*} -\frac {6 \, e^{x}}{x^{3} - {\left (\log \relax (2)^{2} - e^{\frac {1}{2}} + 6 \, \log \relax (2) + 9\right )} x + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.70, size = 28, normalized size = 0.88 \begin {gather*} -\frac {6\,{\mathrm {e}}^x}{x^3+x^2+\left (\sqrt {\mathrm {e}}-\ln \left (64\right )-{\ln \relax (2)}^2-9\right )\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________