Optimal. Leaf size=26 \[ e^x+\frac {-\frac {1}{6} e^{e^3 x}+2 x}{10 x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 25, normalized size of antiderivative = 0.96, number of steps used = 7, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {12, 14, 2197, 2194} \begin {gather*} -\frac {e^{e^3 x}}{60 x^2}+e^x+\frac {1}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{60} \int \frac {-12 x+60 e^x x^3+e^{e^3 x} \left (2-e^3 x\right )}{x^3} \, dx\\ &=\frac {1}{60} \int \left (-\frac {e^{e^3 x} \left (-2+e^3 x\right )}{x^3}+\frac {12 \left (-1+5 e^x x^2\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{60} \int \frac {e^{e^3 x} \left (-2+e^3 x\right )}{x^3} \, dx\right )+\frac {1}{5} \int \frac {-1+5 e^x x^2}{x^2} \, dx\\ &=-\frac {e^{e^3 x}}{60 x^2}+\frac {1}{5} \int \left (5 e^x-\frac {1}{x^2}\right ) \, dx\\ &=-\frac {e^{e^3 x}}{60 x^2}+\frac {1}{5 x}+\int e^x \, dx\\ &=e^x-\frac {e^{e^3 x}}{60 x^2}+\frac {1}{5 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 0.96 \begin {gather*} e^x-\frac {e^{e^3 x}}{60 x^2}+\frac {1}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 23, normalized size = 0.88 \begin {gather*} \frac {60 \, x^{2} e^{x} + 12 \, x - e^{\left (x e^{3}\right )}}{60 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 23, normalized size = 0.88 \begin {gather*} \frac {60 \, x^{2} e^{x} + 12 \, x - e^{\left (x e^{3}\right )}}{60 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 19, normalized size = 0.73
method | result | size |
risch | \(\frac {1}{5 x}+{\mathrm e}^{x}-\frac {{\mathrm e}^{x \,{\mathrm e}^{3}}}{60 x^{2}}\) | \(19\) |
norman | \(\frac {{\mathrm e}^{x} x^{2}+\frac {x}{5}-\frac {{\mathrm e}^{x \,{\mathrm e}^{3}}}{60}}{x^{2}}\) | \(22\) |
default | \(\frac {1}{5 x}+\frac {{\mathrm e}^{6} \left (-\frac {{\mathrm e}^{x \,{\mathrm e}^{3}} {\mathrm e}^{-6}}{2 x^{2}}-\frac {{\mathrm e}^{x \,{\mathrm e}^{3}} {\mathrm e}^{-3}}{2 x}-\frac {\expIntegralEi \left (1, -x \,{\mathrm e}^{3}\right )}{2}\right )}{30}-\frac {{\mathrm e}^{6} \left (-\frac {{\mathrm e}^{x \,{\mathrm e}^{3}} {\mathrm e}^{-3}}{x}-\expIntegralEi \left (1, -x \,{\mathrm e}^{3}\right )\right )}{60}+{\mathrm e}^{x}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.51, size = 30, normalized size = 1.15 \begin {gather*} -\frac {1}{60} \, e^{6} \Gamma \left (-1, -x e^{3}\right ) - \frac {1}{30} \, e^{6} \Gamma \left (-2, -x e^{3}\right ) + \frac {1}{5 \, x} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 18, normalized size = 0.69 \begin {gather*} {\mathrm {e}}^x+\frac {\frac {x}{5}-\frac {{\mathrm {e}}^{x\,{\mathrm {e}}^3}}{60}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.70, size = 19, normalized size = 0.73 \begin {gather*} e^{x} + \frac {1}{5 x} - \frac {e^{x e^{3}}}{60 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________