Optimal. Leaf size=23 \[ \frac {15625 \left (5-e^3\right ) x \log \left (\frac {x}{2}\right )}{x+x^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 37, normalized size of antiderivative = 1.61, number of steps used = 12, number of rules used = 10, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {1594, 28, 6688, 12, 6742, 266, 44, 261, 2335, 260} \begin {gather*} 15625 \left (5-e^3\right ) \log (x)-\frac {15625 \left (5-e^3\right ) x^3 \log \left (\frac {x}{2}\right )}{x^3+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 28
Rule 44
Rule 260
Rule 261
Rule 266
Rule 1594
Rule 2335
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {78125+78125 x^3+e^3 \left (-15625-15625 x^3\right )+\left (-234375 x^3+46875 e^3 x^3\right ) \log \left (\frac {x}{2}\right )}{x \left (1+2 x^3+x^6\right )} \, dx\\ &=\int \frac {78125+78125 x^3+e^3 \left (-15625-15625 x^3\right )+\left (-234375 x^3+46875 e^3 x^3\right ) \log \left (\frac {x}{2}\right )}{x \left (1+x^3\right )^2} \, dx\\ &=\int \frac {15625 \left (5-e^3\right ) \left (1+x^3-3 x^3 \log \left (\frac {x}{2}\right )\right )}{x \left (1+x^3\right )^2} \, dx\\ &=\left (15625 \left (5-e^3\right )\right ) \int \frac {1+x^3-3 x^3 \log \left (\frac {x}{2}\right )}{x \left (1+x^3\right )^2} \, dx\\ &=\left (15625 \left (5-e^3\right )\right ) \int \left (\frac {1}{x \left (1+x^3\right )^2}+\frac {x^2}{\left (1+x^3\right )^2}-\frac {3 x^2 \log \left (\frac {x}{2}\right )}{\left (1+x^3\right )^2}\right ) \, dx\\ &=\left (15625 \left (5-e^3\right )\right ) \int \frac {1}{x \left (1+x^3\right )^2} \, dx+\left (15625 \left (5-e^3\right )\right ) \int \frac {x^2}{\left (1+x^3\right )^2} \, dx-\left (46875 \left (5-e^3\right )\right ) \int \frac {x^2 \log \left (\frac {x}{2}\right )}{\left (1+x^3\right )^2} \, dx\\ &=-\frac {15625 \left (5-e^3\right )}{3 \left (1+x^3\right )}-\frac {15625 \left (5-e^3\right ) x^3 \log \left (\frac {x}{2}\right )}{1+x^3}+\frac {1}{3} \left (15625 \left (5-e^3\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x (1+x)^2} \, dx,x,x^3\right )+\left (15625 \left (5-e^3\right )\right ) \int \frac {x^2}{1+x^3} \, dx\\ &=-\frac {15625 \left (5-e^3\right )}{3 \left (1+x^3\right )}-\frac {15625 \left (5-e^3\right ) x^3 \log \left (\frac {x}{2}\right )}{1+x^3}+\frac {15625}{3} \left (5-e^3\right ) \log \left (1+x^3\right )+\frac {1}{3} \left (15625 \left (5-e^3\right )\right ) \operatorname {Subst}\left (\int \left (\frac {1}{-1-x}+\frac {1}{x}-\frac {1}{(1+x)^2}\right ) \, dx,x,x^3\right )\\ &=-\frac {15625 \left (5-e^3\right ) x^3 \log \left (\frac {x}{2}\right )}{1+x^3}+15625 \left (5-e^3\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 20, normalized size = 0.87 \begin {gather*} -\frac {15625 \left (-5+e^3\right ) \log \left (\frac {x}{2}\right )}{1+x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 17, normalized size = 0.74 \begin {gather*} -\frac {15625 \, {\left (e^{3} - 5\right )} \log \left (\frac {1}{2} \, x\right )}{x^{3} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 23, normalized size = 1.00 \begin {gather*} -\frac {15625 \, {\left (e^{3} \log \left (\frac {1}{2} \, x\right ) - 5 \, \log \left (\frac {1}{2} \, x\right )\right )}}{x^{3} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 18, normalized size = 0.78
method | result | size |
risch | \(-\frac {15625 \left ({\mathrm e}^{3}-5\right ) \ln \left (\frac {x}{2}\right )}{x^{3}+1}\) | \(18\) |
norman | \(\frac {\left (-15625 \,{\mathrm e}^{3}+78125\right ) \ln \left (\frac {x}{2}\right )}{x^{3}+1}\) | \(19\) |
derivativedivides | \(\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}+\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9 \left (x^{2}-x +1\right )}-\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}-\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9 \left (x^{2}-x +1\right )}-\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}+\frac {78125 i \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9 \left (x^{2}-x +1\right )}+\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}+\frac {78125 i \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9}-\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}-\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}+\frac {31250 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) x^{2}}{3 \left (x^{2}-x +1\right )}-\frac {15625 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) x}{3 \left (x^{2}-x +1\right )}+\frac {15625 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) x}{3 \left (x +1\right )}-\frac {78125 i \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9}+\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}-\frac {156250 \ln \left (\frac {x}{2}\right ) x^{2}}{3 \left (x^{2}-x +1\right )}+\frac {78125 \ln \left (\frac {x}{2}\right ) x}{3 \left (x^{2}-x +1\right )}-15625 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right )+78125 \ln \left (\frac {x}{2}\right )-\frac {78125 \ln \left (\frac {x}{2}\right ) x}{3 \left (x +1\right )}-\frac {15625 i {\mathrm e}^{3} \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9}+\frac {15625 i {\mathrm e}^{3} \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9}+\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}-\frac {78125 i \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9 \left (x^{2}-x +1\right )}\) | \(798\) |
default | \(\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}+\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9 \left (x^{2}-x +1\right )}-\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}-\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9 \left (x^{2}-x +1\right )}-\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}+\frac {78125 i \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9 \left (x^{2}-x +1\right )}+\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}+\frac {78125 i \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9}-\frac {78125 i \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}-\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}+\frac {31250 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) x^{2}}{3 \left (x^{2}-x +1\right )}-\frac {15625 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) x}{3 \left (x^{2}-x +1\right )}+\frac {15625 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) x}{3 \left (x +1\right )}-\frac {78125 i \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9}+\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right ) \sqrt {3}\, x^{2}}{9 \left (x^{2}-x +1\right )}-\frac {156250 \ln \left (\frac {x}{2}\right ) x^{2}}{3 \left (x^{2}-x +1\right )}+\frac {78125 \ln \left (\frac {x}{2}\right ) x}{3 \left (x^{2}-x +1\right )}-15625 \,{\mathrm e}^{3} \ln \left (\frac {x}{2}\right )+78125 \ln \left (\frac {x}{2}\right )-\frac {78125 \ln \left (\frac {x}{2}\right ) x}{3 \left (x +1\right )}-\frac {15625 i {\mathrm e}^{3} \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9}+\frac {15625 i {\mathrm e}^{3} \sqrt {3}\, \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right )}{9}+\frac {15625 i {\mathrm e}^{3} \ln \left (\frac {x}{2}\right ) \ln \left (\frac {i \sqrt {3}-2 x +1}{1+i \sqrt {3}}\right ) \sqrt {3}\, x}{9 \left (x^{2}-x +1\right )}-\frac {78125 i \ln \left (\frac {x}{2}\right ) \sqrt {3}\, \ln \left (\frac {i \sqrt {3}+2 x -1}{i \sqrt {3}-1}\right )}{9 \left (x^{2}-x +1\right )}\) | \(798\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 123, normalized size = 5.35 \begin {gather*} -\frac {15625}{3} \, {\left (\frac {3 \, \log \left (\frac {1}{2} \, x\right )}{x^{3} + 1} + \log \left (x^{3} + 1\right ) - \log \left (x^{3}\right )\right )} e^{3} - \frac {15625}{3} \, {\left (\frac {1}{x^{3} + 1} - \log \left (x^{2} - x + 1\right ) - \log \left (x + 1\right ) + 3 \, \log \relax (x)\right )} e^{3} + \frac {15625 \, e^{3}}{3 \, {\left (x^{3} + 1\right )}} + \frac {78125 \, \log \left (\frac {1}{2} \, x\right )}{x^{3} + 1} + \frac {78125}{3} \, \log \left (x^{3} + 1\right ) - \frac {78125}{3} \, \log \left (x^{3}\right ) - \frac {78125}{3} \, \log \left (x^{2} - x + 1\right ) - \frac {78125}{3} \, \log \left (x + 1\right ) + 78125 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.68, size = 24, normalized size = 1.04 \begin {gather*} -\frac {x^2\,\ln \left (\frac {x}{2}\right )\,\left (15625\,{\mathrm {e}}^3-78125\right )}{x^5+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.65 \begin {gather*} \frac {\left (78125 - 15625 e^{3}\right ) \log {\left (\frac {x}{2} \right )}}{x^{3} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________