Optimal. Leaf size=25 \[ \frac {x}{-2-x+\log (x) \left (x+\frac {6 \log (x)}{4+8 x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8-36 x-48 x^2-16 x^3+(-12-24 x) \log (x)+(6+24 x) \log ^2(x)}{16+80 x+132 x^2+80 x^3+16 x^4+\left (-16 x-72 x^2-96 x^3-32 x^4\right ) \log (x)+\left (-24-60 x-20 x^2+16 x^3+16 x^4\right ) \log ^2(x)+\left (12 x+24 x^2\right ) \log ^3(x)+9 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 (2+x) (1+2 x)^2-12 (1+2 x) \log (x)+6 (1+4 x) \log ^2(x)}{\left (2 \left (2+5 x+2 x^2\right )-2 x (1+2 x) \log (x)-3 \log ^2(x)\right )^2} \, dx\\ &=\int \left (-\frac {4 (1+2 x) \left (-4 x-2 x^2+3 \log (x)+x \log (x)+4 x^2 \log (x)\right )}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {2 (1+4 x)}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)}\right ) \, dx\\ &=2 \int \frac {1+4 x}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \, dx-4 \int \frac {(1+2 x) \left (-4 x-2 x^2+3 \log (x)+x \log (x)+4 x^2 \log (x)\right )}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx\\ &=2 \int \left (\frac {1}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)}+\frac {4 x}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)}\right ) \, dx-4 \int \left (\frac {-4 x-2 x^2+3 \log (x)+x \log (x)+4 x^2 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {2 x \left (-4 x-2 x^2+3 \log (x)+x \log (x)+4 x^2 \log (x)\right )}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \, dx-4 \int \frac {-4 x-2 x^2+3 \log (x)+x \log (x)+4 x^2 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx-8 \int \frac {x \left (-4 x-2 x^2+3 \log (x)+x \log (x)+4 x^2 \log (x)\right )}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx+8 \int \frac {x}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \, dx\\ &=2 \int \frac {1}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \, dx-4 \int \left (-\frac {4 x}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}-\frac {2 x^2}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {3 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {x \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {4 x^2 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}\right ) \, dx+8 \int \frac {x}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \, dx-8 \int \left (-\frac {4 x^2}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}-\frac {2 x^3}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {3 x \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {x^2 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}+\frac {4 x^3 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \, dx-4 \int \frac {x \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx+8 \int \frac {x^2}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx-8 \int \frac {x^2 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx+8 \int \frac {x}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \, dx-12 \int \frac {\log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx+16 \int \frac {x}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx+16 \int \frac {x^3}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx-16 \int \frac {x^2 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx-24 \int \frac {x \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx+32 \int \frac {x^2}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx-32 \int \frac {x^3 \log (x)}{\left (-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.74, size = 39, normalized size = 1.56 \begin {gather*} \frac {2 \left (x+2 x^2\right )}{-4-10 x-4 x^2+2 x \log (x)+4 x^2 \log (x)+3 \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 38, normalized size = 1.52 \begin {gather*} -\frac {2 \, {\left (2 \, x^{2} + x\right )}}{4 \, x^{2} - 2 \, {\left (2 \, x^{2} + x\right )} \log \relax (x) - 3 \, \log \relax (x)^{2} + 10 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.31, size = 39, normalized size = 1.56 \begin {gather*} \frac {2 \, {\left (2 \, x^{2} + x\right )}}{4 \, x^{2} \log \relax (x) - 4 \, x^{2} + 2 \, x \log \relax (x) + 3 \, \log \relax (x)^{2} - 10 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 39, normalized size = 1.56
method | result | size |
risch | \(\frac {2 \left (2 x +1\right ) x}{4 x^{2} \ln \relax (x )+3 \ln \relax (x )^{2}+2 x \ln \relax (x )-4 x^{2}-10 x -4}\) | \(39\) |
norman | \(\frac {4 x^{2}+2 x}{4 x^{2} \ln \relax (x )+3 \ln \relax (x )^{2}+2 x \ln \relax (x )-4 x^{2}-10 x -4}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 38, normalized size = 1.52 \begin {gather*} -\frac {2 \, {\left (2 \, x^{2} + x\right )}}{4 \, x^{2} - 2 \, {\left (2 \, x^{2} + x\right )} \log \relax (x) - 3 \, \log \relax (x)^{2} + 10 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {36\,x+\ln \relax (x)\,\left (24\,x+12\right )+48\,x^2+16\,x^3-{\ln \relax (x)}^2\,\left (24\,x+6\right )+8}{80\,x+{\ln \relax (x)}^3\,\left (24\,x^2+12\,x\right )-\ln \relax (x)\,\left (32\,x^4+96\,x^3+72\,x^2+16\,x\right )+9\,{\ln \relax (x)}^4-{\ln \relax (x)}^2\,\left (-16\,x^4-16\,x^3+20\,x^2+60\,x+24\right )+132\,x^2+80\,x^3+16\,x^4+16} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 36, normalized size = 1.44 \begin {gather*} \frac {4 x^{2} + 2 x}{- 4 x^{2} - 10 x + \left (4 x^{2} + 2 x\right ) \log {\relax (x )} + 3 \log {\relax (x )}^{2} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________