Optimal. Leaf size=18 \[ \frac {9 \log \left (\frac {5}{2} \left (-5+e^3-2 x\right )\right )}{e^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {12, 33, 31} \begin {gather*} \frac {9 \log \left (2 x-e^3+5\right )}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 33
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (18 \int \frac {1}{e^5+e^2 (-5-2 x)} \, dx\right )\\ &=9 \operatorname {Subst}\left (\int \frac {1}{e^5+e^2 x} \, dx,x,-5-2 x\right )\\ &=\frac {9 \log \left (5-e^3+2 x\right )}{e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 14, normalized size = 0.78 \begin {gather*} \frac {9 \log \left (-5+e^3-2 x\right )}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 14, normalized size = 0.78 \begin {gather*} 9 \, e^{\left (-2\right )} \log \left (2 \, x - e^{3} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 19, normalized size = 1.06 \begin {gather*} 9 \, e^{\left (-2\right )} \log \left ({\left | {\left (2 \, x + 5\right )} e^{2} - e^{5} \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 15, normalized size = 0.83
method | result | size |
norman | \(9 \,{\mathrm e}^{-2} \ln \left ({\mathrm e}^{3}-2 x -5\right )\) | \(15\) |
risch | \(9 \,{\mathrm e}^{-2} \ln \left (2 x +5-{\mathrm e}^{3}\right )\) | \(15\) |
meijerg | \(9 \,{\mathrm e}^{-2} \ln \left (1-\frac {2 x \,{\mathrm e}^{2}}{{\mathrm e}^{5}-5 \,{\mathrm e}^{2}}\right )\) | \(22\) |
default | \(9 \ln \left (-2 \,{\mathrm e}^{2} x +{\mathrm e}^{2} {\mathrm e}^{3}-5 \,{\mathrm e}^{2}\right ) {\mathrm e}^{-2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 1.00 \begin {gather*} 9 \, e^{\left (-2\right )} \log \left ({\left (2 \, x + 5\right )} e^{2} - e^{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 14, normalized size = 0.78 \begin {gather*} 9\,{\mathrm {e}}^{-2}\,\ln \left (2\,x-{\mathrm {e}}^3+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 20, normalized size = 1.11 \begin {gather*} \frac {9 \log {\left (2 x e^{2} - e^{5} + 5 e^{2} \right )}}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________