Optimal. Leaf size=29 \[ \frac {1}{5} e^{\frac {4+x+x (5+x)}{x}}+x+x^2-\log (3 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 23, normalized size of antiderivative = 0.79, number of steps used = 6, number of rules used = 3, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {12, 14, 6706} \begin {gather*} x^2+x+\frac {1}{5} e^{x+\frac {4}{x}+6}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-5 x+5 x^2+10 x^3+e^{\frac {4+6 x+x^2}{x}} \left (-4+x^2\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {e^{6+\frac {4}{x}+x} (-2+x) (2+x)}{x^2}+\frac {5 \left (-1+x+2 x^2\right )}{x}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{6+\frac {4}{x}+x} (-2+x) (2+x)}{x^2} \, dx+\int \frac {-1+x+2 x^2}{x} \, dx\\ &=\frac {1}{5} e^{6+\frac {4}{x}+x}+\int \left (1-\frac {1}{x}+2 x\right ) \, dx\\ &=\frac {1}{5} e^{6+\frac {4}{x}+x}+x+x^2-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 0.93 \begin {gather*} \frac {1}{5} \left (e^{6+\frac {4}{x}+x}+5 x+5 x^2-5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 24, normalized size = 0.83 \begin {gather*} x^{2} + x + \frac {1}{5} \, e^{\left (\frac {x^{2} + 6 \, x + 4}{x}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 0.83 \begin {gather*} x^{2} + x + \frac {1}{5} \, e^{\left (\frac {x^{2} + 6 \, x + 4}{x}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 25, normalized size = 0.86
method | result | size |
risch | \(x^{2}-\ln \relax (x )+x +\frac {{\mathrm e}^{\frac {x^{2}+6 x +4}{x}}}{5}\) | \(25\) |
norman | \(\frac {x^{2}+x^{3}+\frac {x \,{\mathrm e}^{\frac {x^{2}+6 x +4}{x}}}{5}}{x}-\ln \relax (x )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 20, normalized size = 0.69 \begin {gather*} x^{2} + x + \frac {1}{5} \, e^{\left (x + \frac {4}{x} + 6\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.50, size = 20, normalized size = 0.69 \begin {gather*} x+\frac {{\mathrm {e}}^{x+\frac {4}{x}+6}}{5}-\ln \relax (x)+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.69 \begin {gather*} x^{2} + x + \frac {e^{\frac {x^{2} + 6 x + 4}{x}}}{5} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________